Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
Highlights•We use eighteen feature extraction techniques and four machine learning methods for detection of Parkinson‘s disease.•The results show that the Phonation task is the most suitable for use.•The results confirm that it is possible to develop mobile applications for detecting Parkinson’s dis...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2019-07, Vol.125, p.55-62 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Pattern recognition letters |
container_volume | 125 |
creator | Almeida, Jefferson S. Rebouças Filho, Pedro P. Carneiro, Tiago Wei, Wei Damaševičius, Robertas Maskeliūnas, Rytis de Albuquerque, Victor Hugo C. |
description | Highlights•We use eighteen feature extraction techniques and four machine learning methods for detection of Parkinson‘s disease.•The results show that the Phonation task is the most suitable for use.•The results confirm that it is possible to develop mobile applications for detecting Parkinson’s disease using smartphone.
This study investigates the processing of voice signals for detecting Parkinson’s disease. This disease is one of the neurological disorders that affect people in the world most. The approach evaluates the use of eighteen feature extraction techniques and four machine learning methods to classify data obtained from sustained phonation and speech tasks. Phonation relates to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. The audio tasks were recorded using two microphone channels from acoustic cardioid (AC) and a smartphone (SP), thus allowing to evaluate the performance for different types of microphones. Five metrics were employed to analyze the classification performance: Equal Error Rate (EER) and Area Under Curve (AUC) measures from Detection Error Tradeoff (DET) and Receiver Operating Characteristic curves, Accuracy, Specificity, and Sensitivity. We compare this approach with other approaches that use the same data set. We show that the task of phonation was more efficient than speech tasks in the detection of disease. The best performance for the AC channel achieved an accuracy of 94.55%, AUC 0.87, and EER 19.01%. When using the SP channel, we have achieved an accuracy of 92.94%, AUC 0.92, and EER 14.15%. |
doi_str_mv | 10.1016/j.patrec.2019.04.005 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02380596v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865519301163</els_id><sourcerecordid>oai_HAL_hal_02380596v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1e4eb577f83e6a4ddceaa6a3f0e1dca1bb17585da60d8a4c16429170c13730423</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxbeskgYx46TbpAQ_1IlWMDamtpT4tI6JU5B7LgG1-MkOCpiyWqkN997o3mMHQvIBQh9usjX2Hdk8wLEJAeVA5Q7bCTqqsgqqdQuGyWsympdlvvsIMYFAGg5qUdsdUk92d6HZ_6A3YsPsQ3fn1-ROx8JI_F33zc8bmKPPpDj66YN2Ps2cAyOxzWRTWv_HHAZ-SYOOSu0TWL5krALg5AONMG_bigesr15Aunod47Z0_XV48VtNr2_ubs4n2ZW1rrPBCmalVU1ryVpVM5ZQtQo50DCWRSzmajKunSowdWorNCqmIgKrJCVBFXIMTvZ5ja4NOvOr7D7MC16c3s-NYMGhayhnOg3kVi1ZW3XxtjR_M8gwAz1moXZ1muGeg0ok-pNtrOtjdIfb546E62nYMn5hPbGtf7_gB_d2Yik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques</title><source>Elsevier ScienceDirect Journals</source><creator>Almeida, Jefferson S. ; Rebouças Filho, Pedro P. ; Carneiro, Tiago ; Wei, Wei ; Damaševičius, Robertas ; Maskeliūnas, Rytis ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Almeida, Jefferson S. ; Rebouças Filho, Pedro P. ; Carneiro, Tiago ; Wei, Wei ; Damaševičius, Robertas ; Maskeliūnas, Rytis ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>Highlights•We use eighteen feature extraction techniques and four machine learning methods for detection of Parkinson‘s disease.•The results show that the Phonation task is the most suitable for use.•The results confirm that it is possible to develop mobile applications for detecting Parkinson’s disease using smartphone.
This study investigates the processing of voice signals for detecting Parkinson’s disease. This disease is one of the neurological disorders that affect people in the world most. The approach evaluates the use of eighteen feature extraction techniques and four machine learning methods to classify data obtained from sustained phonation and speech tasks. Phonation relates to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. The audio tasks were recorded using two microphone channels from acoustic cardioid (AC) and a smartphone (SP), thus allowing to evaluate the performance for different types of microphones. Five metrics were employed to analyze the classification performance: Equal Error Rate (EER) and Area Under Curve (AUC) measures from Detection Error Tradeoff (DET) and Receiver Operating Characteristic curves, Accuracy, Specificity, and Sensitivity. We compare this approach with other approaches that use the same data set. We show that the task of phonation was more efficient than speech tasks in the detection of disease. The best performance for the AC channel achieved an accuracy of 94.55%, AUC 0.87, and EER 19.01%. When using the SP channel, we have achieved an accuracy of 92.94%, AUC 0.92, and EER 14.15%.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.04.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial Intelligence ; Computer Science ; Computer Vision and Pattern Recognition ; Diagnosis ; Feature extraction ; Machine learning ; Parkinson’s disease ; Phonological features ; Speech processing</subject><ispartof>Pattern recognition letters, 2019-07, Vol.125, p.55-62</ispartof><rights>2019 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1e4eb577f83e6a4ddceaa6a3f0e1dca1bb17585da60d8a4c16429170c13730423</citedby><cites>FETCH-LOGICAL-c386t-1e4eb577f83e6a4ddceaa6a3f0e1dca1bb17585da60d8a4c16429170c13730423</cites><orcidid>0000-0003-3886-4309 ; 0000-0002-1878-5489 ; 0000-0001-9990-1084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865519301163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02380596$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Jefferson S.</creatorcontrib><creatorcontrib>Rebouças Filho, Pedro P.</creatorcontrib><creatorcontrib>Carneiro, Tiago</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Maskeliūnas, Rytis</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques</title><title>Pattern recognition letters</title><description>Highlights•We use eighteen feature extraction techniques and four machine learning methods for detection of Parkinson‘s disease.•The results show that the Phonation task is the most suitable for use.•The results confirm that it is possible to develop mobile applications for detecting Parkinson’s disease using smartphone.
This study investigates the processing of voice signals for detecting Parkinson’s disease. This disease is one of the neurological disorders that affect people in the world most. The approach evaluates the use of eighteen feature extraction techniques and four machine learning methods to classify data obtained from sustained phonation and speech tasks. Phonation relates to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. The audio tasks were recorded using two microphone channels from acoustic cardioid (AC) and a smartphone (SP), thus allowing to evaluate the performance for different types of microphones. Five metrics were employed to analyze the classification performance: Equal Error Rate (EER) and Area Under Curve (AUC) measures from Detection Error Tradeoff (DET) and Receiver Operating Characteristic curves, Accuracy, Specificity, and Sensitivity. We compare this approach with other approaches that use the same data set. We show that the task of phonation was more efficient than speech tasks in the detection of disease. The best performance for the AC channel achieved an accuracy of 94.55%, AUC 0.87, and EER 19.01%. When using the SP channel, we have achieved an accuracy of 92.94%, AUC 0.92, and EER 14.15%.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Parkinson’s disease</subject><subject>Phonological features</subject><subject>Speech processing</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxbeskgYx46TbpAQ_1IlWMDamtpT4tI6JU5B7LgG1-MkOCpiyWqkN997o3mMHQvIBQh9usjX2Hdk8wLEJAeVA5Q7bCTqqsgqqdQuGyWsympdlvvsIMYFAGg5qUdsdUk92d6HZ_6A3YsPsQ3fn1-ROx8JI_F33zc8bmKPPpDj66YN2Ps2cAyOxzWRTWv_HHAZ-SYOOSu0TWL5krALg5AONMG_bigesr15Aunod47Z0_XV48VtNr2_ubs4n2ZW1rrPBCmalVU1ryVpVM5ZQtQo50DCWRSzmajKunSowdWorNCqmIgKrJCVBFXIMTvZ5ja4NOvOr7D7MC16c3s-NYMGhayhnOg3kVi1ZW3XxtjR_M8gwAz1moXZ1muGeg0ok-pNtrOtjdIfb546E62nYMn5hPbGtf7_gB_d2Yik</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Almeida, Jefferson S.</creator><creator>Rebouças Filho, Pedro P.</creator><creator>Carneiro, Tiago</creator><creator>Wei, Wei</creator><creator>Damaševičius, Robertas</creator><creator>Maskeliūnas, Rytis</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-1878-5489</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid></search><sort><creationdate>20190701</creationdate><title>Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques</title><author>Almeida, Jefferson S. ; Rebouças Filho, Pedro P. ; Carneiro, Tiago ; Wei, Wei ; Damaševičius, Robertas ; Maskeliūnas, Rytis ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1e4eb577f83e6a4ddceaa6a3f0e1dca1bb17585da60d8a4c16429170c13730423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Parkinson’s disease</topic><topic>Phonological features</topic><topic>Speech processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Jefferson S.</creatorcontrib><creatorcontrib>Rebouças Filho, Pedro P.</creatorcontrib><creatorcontrib>Carneiro, Tiago</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Maskeliūnas, Rytis</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Jefferson S.</au><au>Rebouças Filho, Pedro P.</au><au>Carneiro, Tiago</au><au>Wei, Wei</au><au>Damaševičius, Robertas</au><au>Maskeliūnas, Rytis</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques</atitle><jtitle>Pattern recognition letters</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>125</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>Highlights•We use eighteen feature extraction techniques and four machine learning methods for detection of Parkinson‘s disease.•The results show that the Phonation task is the most suitable for use.•The results confirm that it is possible to develop mobile applications for detecting Parkinson’s disease using smartphone.
This study investigates the processing of voice signals for detecting Parkinson’s disease. This disease is one of the neurological disorders that affect people in the world most. The approach evaluates the use of eighteen feature extraction techniques and four machine learning methods to classify data obtained from sustained phonation and speech tasks. Phonation relates to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. The audio tasks were recorded using two microphone channels from acoustic cardioid (AC) and a smartphone (SP), thus allowing to evaluate the performance for different types of microphones. Five metrics were employed to analyze the classification performance: Equal Error Rate (EER) and Area Under Curve (AUC) measures from Detection Error Tradeoff (DET) and Receiver Operating Characteristic curves, Accuracy, Specificity, and Sensitivity. We compare this approach with other approaches that use the same data set. We show that the task of phonation was more efficient than speech tasks in the detection of disease. The best performance for the AC channel achieved an accuracy of 94.55%, AUC 0.87, and EER 19.01%. When using the SP channel, we have achieved an accuracy of 92.94%, AUC 0.92, and EER 14.15%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.04.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3886-4309</orcidid><orcidid>https://orcid.org/0000-0002-1878-5489</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2019-07, Vol.125, p.55-62 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02380596v1 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial Intelligence Computer Science Computer Vision and Pattern Recognition Diagnosis Feature extraction Machine learning Parkinson’s disease Phonological features Speech processing |
title | Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Parkinson%E2%80%99s%20disease%20with%20sustained%20phonation%20and%20speech%20signals%20using%20machine%20learning%20techniques&rft.jtitle=Pattern%20recognition%20letters&rft.au=Almeida,%20Jefferson%20S.&rft.date=2019-07-01&rft.volume=125&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.04.005&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02380596v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865519301163&rfr_iscdi=true |