Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation

Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-05, Vol.101 (21), p.7954-7959
Hauptverfasser: Di Nardo, Ariel A., Korzhnev, Dmitry M., Stogios, Peter J., Zarrine-Afsar, Arash, Kay, Lewis E., Davidson, Alan R., Levitt, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7959
container_issue 21
container_start_page 7954
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Di Nardo, Ariel A.
Korzhnev, Dmitry M.
Stogios, Peter J.
Zarrine-Afsar, Arash
Kay, Lewis E.
Davidson, Alan R.
Levitt, Michael
description Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.
doi_str_mv 10.1073/pnas.0400550101
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02380135v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372432</jstor_id><sourcerecordid>3372432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</originalsourceid><addsrcrecordid>eNp90U1vEzEQBmALgWgonLkgsDjBYdvx19o-9BACpUgRIAFXLK_Xbjds7ODdRJRfj0OiBDhw8tfzjjUahB4TOCMg2fkq2uEMOIAQQIDcQRMCmlQ113AXTQCorBSn_AQ9GIYFAGih4D46IYJwxbSaoK-vs13asXN46pzvfS77FHEK-GNOo-8ivkx928Vr3NziT6Ntur77eTAWv08xluPG41fWfWtS9HiWYkh5-Rs9RPeC7Qf_aL-eoi-Xbz7Prqr5h7fvZtN55YRmYyWFVq72tQqtdDqAC8oFKVrNvfY1la0W4FzLiWxZ4-rW8UCDbbWqSUO1b9gputjVXa2bpW-dj2O2vVnlbmnzrUm2M3-_xO7GXKeN4UQLpkr-5S5_80_qajo32zugTAFhYkOKfb7_K6fvaz-MZpHWOZb2DC1E1VLQgs53yOU0DNmHQ1UCZjs6sx2dOY6uJJ7-2cLR72dVwIs92CaP5YihxEgtuAnrvh_9j7HQZ_-nRTzZicUwpnwgjEnKGWW_AFYat_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201386752</pqid></control><display><type>article</type><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</creator><creatorcontrib>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</creatorcontrib><description>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0400550101</identifier><identifier>PMID: 15148398</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acid substitution ; Amino acids ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Sciences ; Biophysics ; Correlations ; Evolution ; Fluorescence ; Glycine - genetics ; Glycine - metabolism ; Kinetics ; Life Sciences ; Magnetic Resonance Spectroscopy ; Mathematical functions ; Models, Molecular ; Mutation ; Mutation - genetics ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Protein Binding ; Protein Conformation ; Protein Denaturation ; Protein engineering ; Protein Folding ; Protein Renaturation ; Proteins - chemistry ; Proteins - genetics ; Structural Biology ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7954-7959</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 25, 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</citedby><cites>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</cites><orcidid>0000-0001-8663-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15148398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02380135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Nardo, Ariel A.</creatorcontrib><creatorcontrib>Korzhnev, Dmitry M.</creatorcontrib><creatorcontrib>Stogios, Peter J.</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><creatorcontrib>Davidson, Alan R.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</description><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Correlations</subject><subject>Evolution</subject><subject>Fluorescence</subject><subject>Glycine - genetics</subject><subject>Glycine - metabolism</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical functions</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein engineering</subject><subject>Protein Folding</subject><subject>Protein Renaturation</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Structural Biology</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1vEzEQBmALgWgonLkgsDjBYdvx19o-9BACpUgRIAFXLK_Xbjds7ODdRJRfj0OiBDhw8tfzjjUahB4TOCMg2fkq2uEMOIAQQIDcQRMCmlQ113AXTQCorBSn_AQ9GIYFAGih4D46IYJwxbSaoK-vs13asXN46pzvfS77FHEK-GNOo-8ivkx928Vr3NziT6Ntur77eTAWv08xluPG41fWfWtS9HiWYkh5-Rs9RPeC7Qf_aL-eoi-Xbz7Prqr5h7fvZtN55YRmYyWFVq72tQqtdDqAC8oFKVrNvfY1la0W4FzLiWxZ4-rW8UCDbbWqSUO1b9gputjVXa2bpW-dj2O2vVnlbmnzrUm2M3-_xO7GXKeN4UQLpkr-5S5_80_qajo32zugTAFhYkOKfb7_K6fvaz-MZpHWOZb2DC1E1VLQgs53yOU0DNmHQ1UCZjs6sx2dOY6uJJ7-2cLR72dVwIs92CaP5YihxEgtuAnrvh_9j7HQZ_-nRTzZicUwpnwgjEnKGWW_AFYat_Q</recordid><startdate>20040525</startdate><enddate>20040525</enddate><creator>Di Nardo, Ariel A.</creator><creator>Korzhnev, Dmitry M.</creator><creator>Stogios, Peter J.</creator><creator>Zarrine-Afsar, Arash</creator><creator>Kay, Lewis E.</creator><creator>Davidson, Alan R.</creator><creator>Levitt, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8663-1425</orcidid></search><sort><creationdate>20040525</creationdate><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><author>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Correlations</topic><topic>Evolution</topic><topic>Fluorescence</topic><topic>Glycine - genetics</topic><topic>Glycine - metabolism</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical functions</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein engineering</topic><topic>Protein Folding</topic><topic>Protein Renaturation</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Structural Biology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nardo, Ariel A.</creatorcontrib><creatorcontrib>Korzhnev, Dmitry M.</creatorcontrib><creatorcontrib>Stogios, Peter J.</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><creatorcontrib>Davidson, Alan R.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nardo, Ariel A.</au><au>Korzhnev, Dmitry M.</au><au>Stogios, Peter J.</au><au>Zarrine-Afsar, Arash</au><au>Kay, Lewis E.</au><au>Davidson, Alan R.</au><au>Levitt, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-05-25</date><risdate>2004</risdate><volume>101</volume><issue>21</issue><spage>7954</spage><epage>7959</epage><pages>7954-7959</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15148398</pmid><doi>10.1073/pnas.0400550101</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8663-1425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7954-7959
issn 0027-8424
1091-6490
language eng
recordid cdi_hal_primary_oai_HAL_hal_02380135v1
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acid substitution
Amino acids
Biochemistry
Biochemistry, Molecular Biology
Biological Sciences
Biophysics
Correlations
Evolution
Fluorescence
Glycine - genetics
Glycine - metabolism
Kinetics
Life Sciences
Magnetic Resonance Spectroscopy
Mathematical functions
Models, Molecular
Mutation
Mutation - genetics
NMR
Nuclear magnetic resonance
Physical Sciences
Protein Binding
Protein Conformation
Protein Denaturation
Protein engineering
Protein Folding
Protein Renaturation
Proteins - chemistry
Proteins - genetics
Structural Biology
Thermodynamics
title Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dramatic%20Acceleration%20of%20Protein%20Folding%20by%20Stabilization%20of%20a%20Nonnative%20Backbone%20Conformation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Di%20Nardo,%20Ariel%20A.&rft.date=2004-05-25&rft.volume=101&rft.issue=21&rft.spage=7954&rft.epage=7959&rft.pages=7954-7959&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0400550101&rft_dat=%3Cjstor_hal_p%3E3372432%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201386752&rft_id=info:pmid/15148398&rft_jstor_id=3372432&rfr_iscdi=true