Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation
Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-05, Vol.101 (21), p.7954-7959 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7959 |
---|---|
container_issue | 21 |
container_start_page | 7954 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Di Nardo, Ariel A. Korzhnev, Dmitry M. Stogios, Peter J. Zarrine-Afsar, Arash Kay, Lewis E. Davidson, Alan R. Levitt, Michael |
description | Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible. |
doi_str_mv | 10.1073/pnas.0400550101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02380135v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372432</jstor_id><sourcerecordid>3372432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</originalsourceid><addsrcrecordid>eNp90U1vEzEQBmALgWgonLkgsDjBYdvx19o-9BACpUgRIAFXLK_Xbjds7ODdRJRfj0OiBDhw8tfzjjUahB4TOCMg2fkq2uEMOIAQQIDcQRMCmlQ113AXTQCorBSn_AQ9GIYFAGih4D46IYJwxbSaoK-vs13asXN46pzvfS77FHEK-GNOo-8ivkx928Vr3NziT6Ntur77eTAWv08xluPG41fWfWtS9HiWYkh5-Rs9RPeC7Qf_aL-eoi-Xbz7Prqr5h7fvZtN55YRmYyWFVq72tQqtdDqAC8oFKVrNvfY1la0W4FzLiWxZ4-rW8UCDbbWqSUO1b9gputjVXa2bpW-dj2O2vVnlbmnzrUm2M3-_xO7GXKeN4UQLpkr-5S5_80_qajo32zugTAFhYkOKfb7_K6fvaz-MZpHWOZb2DC1E1VLQgs53yOU0DNmHQ1UCZjs6sx2dOY6uJJ7-2cLR72dVwIs92CaP5YihxEgtuAnrvh_9j7HQZ_-nRTzZicUwpnwgjEnKGWW_AFYat_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201386752</pqid></control><display><type>article</type><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</creator><creatorcontrib>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</creatorcontrib><description>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0400550101</identifier><identifier>PMID: 15148398</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acid substitution ; Amino acids ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Sciences ; Biophysics ; Correlations ; Evolution ; Fluorescence ; Glycine - genetics ; Glycine - metabolism ; Kinetics ; Life Sciences ; Magnetic Resonance Spectroscopy ; Mathematical functions ; Models, Molecular ; Mutation ; Mutation - genetics ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Protein Binding ; Protein Conformation ; Protein Denaturation ; Protein engineering ; Protein Folding ; Protein Renaturation ; Proteins - chemistry ; Proteins - genetics ; Structural Biology ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7954-7959</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 25, 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</citedby><cites>FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</cites><orcidid>0000-0001-8663-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15148398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02380135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Nardo, Ariel A.</creatorcontrib><creatorcontrib>Korzhnev, Dmitry M.</creatorcontrib><creatorcontrib>Stogios, Peter J.</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><creatorcontrib>Davidson, Alan R.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</description><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Correlations</subject><subject>Evolution</subject><subject>Fluorescence</subject><subject>Glycine - genetics</subject><subject>Glycine - metabolism</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical functions</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein engineering</subject><subject>Protein Folding</subject><subject>Protein Renaturation</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Structural Biology</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1vEzEQBmALgWgonLkgsDjBYdvx19o-9BACpUgRIAFXLK_Xbjds7ODdRJRfj0OiBDhw8tfzjjUahB4TOCMg2fkq2uEMOIAQQIDcQRMCmlQ113AXTQCorBSn_AQ9GIYFAGih4D46IYJwxbSaoK-vs13asXN46pzvfS77FHEK-GNOo-8ivkx928Vr3NziT6Ntur77eTAWv08xluPG41fWfWtS9HiWYkh5-Rs9RPeC7Qf_aL-eoi-Xbz7Prqr5h7fvZtN55YRmYyWFVq72tQqtdDqAC8oFKVrNvfY1la0W4FzLiWxZ4-rW8UCDbbWqSUO1b9gputjVXa2bpW-dj2O2vVnlbmnzrUm2M3-_xO7GXKeN4UQLpkr-5S5_80_qajo32zugTAFhYkOKfb7_K6fvaz-MZpHWOZb2DC1E1VLQgs53yOU0DNmHQ1UCZjs6sx2dOY6uJJ7-2cLR72dVwIs92CaP5YihxEgtuAnrvh_9j7HQZ_-nRTzZicUwpnwgjEnKGWW_AFYat_Q</recordid><startdate>20040525</startdate><enddate>20040525</enddate><creator>Di Nardo, Ariel A.</creator><creator>Korzhnev, Dmitry M.</creator><creator>Stogios, Peter J.</creator><creator>Zarrine-Afsar, Arash</creator><creator>Kay, Lewis E.</creator><creator>Davidson, Alan R.</creator><creator>Levitt, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8663-1425</orcidid></search><sort><creationdate>20040525</creationdate><title>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</title><author>Di Nardo, Ariel A. ; Korzhnev, Dmitry M. ; Stogios, Peter J. ; Zarrine-Afsar, Arash ; Kay, Lewis E. ; Davidson, Alan R. ; Levitt, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-7598c6e68fd7c9f0cf8cf75d94e9e627d950ccd417d3bc6dc4f2fad9861b29eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Correlations</topic><topic>Evolution</topic><topic>Fluorescence</topic><topic>Glycine - genetics</topic><topic>Glycine - metabolism</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical functions</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein engineering</topic><topic>Protein Folding</topic><topic>Protein Renaturation</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Structural Biology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nardo, Ariel A.</creatorcontrib><creatorcontrib>Korzhnev, Dmitry M.</creatorcontrib><creatorcontrib>Stogios, Peter J.</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><creatorcontrib>Davidson, Alan R.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nardo, Ariel A.</au><au>Korzhnev, Dmitry M.</au><au>Stogios, Peter J.</au><au>Zarrine-Afsar, Arash</au><au>Kay, Lewis E.</au><au>Davidson, Alan R.</au><au>Levitt, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-05-25</date><risdate>2004</risdate><volume>101</volume><issue>21</issue><spage>7954</spage><epage>7959</epage><pages>7954-7959</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Through a mutagenic investigation of Gly-48, a highly conserved position in the Src homology 3 domain, we have discovered a series of amino acid substitutions that are highly destabilizing, yet dramatically accelerate protein folding, some up to 10-fold compared with the wild-type rate. The unique folding properties of these mutants allowed for accurate measurement of their folding and unfolding rates in water with no denaturant by using an NMR spin relaxation dispersion technique. A strong correlation was found between β-sheet propensity and the folding rates of the Gly-48 mutants, even though Gly-48 lies in an unusual non-β-strand backbone conformation in the native state. This finding indicates that the accelerated folding rates of the Gly-48 mutants are the result of stabilization of a nonnative β-strand conformation in the transition-state structure at this position, thus providing the first, to our knowledge, experimentally elucidated example of a mechanism by which folding can occur fastest through a nonnative conformation. We also demonstrate that residues that are most stabilizing in the transition-state structure are most destabilizing in the native state, and also cause the greatest reductions in in vitro functional activity. These data indicate that the unusual native conformation of the Gly-48 position is important for function, and that evolutionary selection for function can result in a domain that folds at a rate far below the maximum possible.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15148398</pmid><doi>10.1073/pnas.0400550101</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8663-1425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7954-7959 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02380135v1 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acid substitution Amino acids Biochemistry Biochemistry, Molecular Biology Biological Sciences Biophysics Correlations Evolution Fluorescence Glycine - genetics Glycine - metabolism Kinetics Life Sciences Magnetic Resonance Spectroscopy Mathematical functions Models, Molecular Mutation Mutation - genetics NMR Nuclear magnetic resonance Physical Sciences Protein Binding Protein Conformation Protein Denaturation Protein engineering Protein Folding Protein Renaturation Proteins - chemistry Proteins - genetics Structural Biology Thermodynamics |
title | Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dramatic%20Acceleration%20of%20Protein%20Folding%20by%20Stabilization%20of%20a%20Nonnative%20Backbone%20Conformation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Di%20Nardo,%20Ariel%20A.&rft.date=2004-05-25&rft.volume=101&rft.issue=21&rft.spage=7954&rft.epage=7959&rft.pages=7954-7959&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0400550101&rft_dat=%3Cjstor_hal_p%3E3372432%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201386752&rft_id=info:pmid/15148398&rft_jstor_id=3372432&rfr_iscdi=true |