First estimate of the scale of canonical 5′ splice site GT>GC variants capable of generating wild‐type transcripts

It has long been known that canonical 5′ splice site (5′SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5′SSs capable of generating wild‐type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2019-10, Vol.40 (10), p.1856-1873
Hauptverfasser: Lin, Jin‐Huan, Tang, Xin‐Ying, Boulling, Arnaud, Zou, Wen‐Bin, Masson, Emmanuelle, Fichou, Yann, Raud, Loann, Le Tertre, Marlène, Deng, Shun‐Jiang, Berlivet, Isabelle, Ka, Chandran, Mort, Matthew, Hayden, Matthew, Leman, Raphaël, Houdayer, Claude, Le Gac, Gerald, Cooper, David N., Li, Zhao‐Shen, Férec, Claude, Liao, Zhuan, Chen, Jian‐Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1873
container_issue 10
container_start_page 1856
container_title Human mutation
container_volume 40
creator Lin, Jin‐Huan
Tang, Xin‐Ying
Boulling, Arnaud
Zou, Wen‐Bin
Masson, Emmanuelle
Fichou, Yann
Raud, Loann
Le Tertre, Marlène
Deng, Shun‐Jiang
Berlivet, Isabelle
Ka, Chandran
Mort, Matthew
Hayden, Matthew
Leman, Raphaël
Houdayer, Claude
Le Gac, Gerald
Cooper, David N.
Li, Zhao‐Shen
Férec, Claude
Liao, Zhuan
Chen, Jian‐Min
description It has long been known that canonical 5′ splice site (5′SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5′SSs capable of generating wild‐type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta‐analysis of 45 human disease‐causing 5′SS GT>GC variants and a cell culture‐based full‐length gene splicing assay of 103 5′SS GT>GC substitutions, we estimate that ~15–18% of canonical GT 5′SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5′SSs in which substitution of GT by GC‐generated normal transcripts exhibit stronger complementarity to the 5′ end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild‐type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5′SS GT>GC variants that generated wild‐type transcripts from those that did not. Our findings imply that 5′SS GT>GC variants in human disease genes may not invariably be pathogenic. Based upon complementary data from the meta‐analysis of 45 disease‐causing 5′SS GT>GC variants and the cell culture‐based full‐length gene splicing analysis of 103 5′SS GT>GC substitutions, we have provided a first estimate of ~15–18% for the proportion of canonical GT 5′SSs that are capable of generating between 1% and 84% normal transcripts in case of the substitution of GT by GC. Given that even the retention of 5% normal transcripts can significantly ameliorate a patient's clinical phenotype, our findings imply the potential existence of hundreds or even thousands of disease‐causing 5′SS GT>GC variants that may underlie relatively mild clinical phenotypes. As 5′SS GT>GC variants can also give rise to relatively high levels of wild‐type transcripts, our findings imply that 5′SS GT>GC variants may not invariably be pathogenic in disease‐causative or disease‐associated genes.
doi_str_mv 10.1002/humu.23821
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02376953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232122651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-c306bd7b599f1c61f56e93be5b590f4f3306be2bf72abf20e566393b628c72743</originalsourceid><addsrcrecordid>eNp9kc1O4zAUhS3EaPiZ2fAAyBIbGCmMf2In2SBVFW1HKmJD15bj2tQoTYLtFHXHI_AsPBJPgtMwLFiwsu-5n4987wHgBKNLjBD5u-rW3SWhOcF74BCjIk-inO73d1YkWVakB-DI-weEUM4Y_QkOKMYUF4wegs3EOh-g9sGuZdCwMTCsNPRKVrtCybqpbawge3t-hb6trIptG9Hp3dV0DDfSWVkHH8lWlsOje11rJ4Ot7-GTrZZvzy9h22oYnKy9crYN_hf4YWTl9e-P8xgsJtd341kyv53-G4_miUpJhhNFES-XWcmKwmDFsWFcF7TULCrIpIb2fU1KkxFZGoI045xGgJNcZSRL6TG4GHxXshKtizO6rWikFbPRXPQaIjTjcRMbHNnzgW1d89jFjYi19UpXlax103lBCCWYEM569OwL-tB0ro6TRKrIcZ7zvKf-DJRyjfdOm88fYCT65ESfnNglF-HTD8uuXOvlJ_o_qgjgAYgr1dtvrMRscbMYTN8BYP2kIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298188681</pqid></control><display><type>article</type><title>First estimate of the scale of canonical 5′ splice site GT&gt;GC variants capable of generating wild‐type transcripts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Jin‐Huan ; Tang, Xin‐Ying ; Boulling, Arnaud ; Zou, Wen‐Bin ; Masson, Emmanuelle ; Fichou, Yann ; Raud, Loann ; Le Tertre, Marlène ; Deng, Shun‐Jiang ; Berlivet, Isabelle ; Ka, Chandran ; Mort, Matthew ; Hayden, Matthew ; Leman, Raphaël ; Houdayer, Claude ; Le Gac, Gerald ; Cooper, David N. ; Li, Zhao‐Shen ; Férec, Claude ; Liao, Zhuan ; Chen, Jian‐Min</creator><creatorcontrib>Lin, Jin‐Huan ; Tang, Xin‐Ying ; Boulling, Arnaud ; Zou, Wen‐Bin ; Masson, Emmanuelle ; Fichou, Yann ; Raud, Loann ; Le Tertre, Marlène ; Deng, Shun‐Jiang ; Berlivet, Isabelle ; Ka, Chandran ; Mort, Matthew ; Hayden, Matthew ; Leman, Raphaël ; Houdayer, Claude ; Le Gac, Gerald ; Cooper, David N. ; Li, Zhao‐Shen ; Férec, Claude ; Liao, Zhuan ; Chen, Jian‐Min</creatorcontrib><description>It has long been known that canonical 5′ splice site (5′SS) GT&gt;GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5′SSs capable of generating wild‐type transcripts in the case of GT&gt;GC substitutions remains unknown. Herein, combining data derived from a meta‐analysis of 45 human disease‐causing 5′SS GT&gt;GC variants and a cell culture‐based full‐length gene splicing assay of 103 5′SS GT&gt;GC substitutions, we estimate that ~15–18% of canonical GT 5′SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5′SSs in which substitution of GT by GC‐generated normal transcripts exhibit stronger complementarity to the 5′ end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild‐type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5′SS GT&gt;GC variants that generated wild‐type transcripts from those that did not. Our findings imply that 5′SS GT&gt;GC variants in human disease genes may not invariably be pathogenic. Based upon complementary data from the meta‐analysis of 45 disease‐causing 5′SS GT&gt;GC variants and the cell culture‐based full‐length gene splicing analysis of 103 5′SS GT&gt;GC substitutions, we have provided a first estimate of ~15–18% for the proportion of canonical GT 5′SSs that are capable of generating between 1% and 84% normal transcripts in case of the substitution of GT by GC. Given that even the retention of 5% normal transcripts can significantly ameliorate a patient's clinical phenotype, our findings imply the potential existence of hundreds or even thousands of disease‐causing 5′SS GT&gt;GC variants that may underlie relatively mild clinical phenotypes. As 5′SS GT&gt;GC variants can also give rise to relatively high levels of wild‐type transcripts, our findings imply that 5′SS GT&gt;GC variants may not invariably be pathogenic in disease‐causative or disease‐associated genes.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23821</identifier><identifier>PMID: 31131953</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Alternative Splicing ; Base Sequence ; canonical 5′ splice site ; Cell culture ; Cells, Cultured ; Complementarity ; Computational Biology - methods ; Databases, Nucleic Acid ; Exons ; full‐length gene splicing assay ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Genetics ; genotype and phenotype relationship ; High-Throughput Nucleotide Sequencing ; human gene mutation database ; Human genetics ; human inherited disease ; Humans ; Introns ; Life Sciences ; noncanonical splice donor site ; Nucleotide Motifs ; Phenotypes ; Position-Specific Scoring Matrices ; RNA Splice Sites ; Sequence Analysis, DNA ; snRNA ; Splicing</subject><ispartof>Human mutation, 2019-10, Vol.40 (10), p.1856-1873</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-c306bd7b599f1c61f56e93be5b590f4f3306be2bf72abf20e566393b628c72743</citedby><cites>FETCH-LOGICAL-c4271-c306bd7b599f1c61f56e93be5b590f4f3306be2bf72abf20e566393b628c72743</cites><orcidid>0000-0002-2424-3969 ; 0000-0001-8506-8159 ; 0000-0002-5104-9125 ; 0000-0003-3236-7280 ; 0000-0001-7747-7876 ; 0000-0003-1978-7133 ; 0000-0001-9777-523X ; 0000-0002-5190-0389 ; 0000-0002-7219-9886 ; 0000-0002-2325-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23821$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23821$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31131953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02376953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Jin‐Huan</creatorcontrib><creatorcontrib>Tang, Xin‐Ying</creatorcontrib><creatorcontrib>Boulling, Arnaud</creatorcontrib><creatorcontrib>Zou, Wen‐Bin</creatorcontrib><creatorcontrib>Masson, Emmanuelle</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Raud, Loann</creatorcontrib><creatorcontrib>Le Tertre, Marlène</creatorcontrib><creatorcontrib>Deng, Shun‐Jiang</creatorcontrib><creatorcontrib>Berlivet, Isabelle</creatorcontrib><creatorcontrib>Ka, Chandran</creatorcontrib><creatorcontrib>Mort, Matthew</creatorcontrib><creatorcontrib>Hayden, Matthew</creatorcontrib><creatorcontrib>Leman, Raphaël</creatorcontrib><creatorcontrib>Houdayer, Claude</creatorcontrib><creatorcontrib>Le Gac, Gerald</creatorcontrib><creatorcontrib>Cooper, David N.</creatorcontrib><creatorcontrib>Li, Zhao‐Shen</creatorcontrib><creatorcontrib>Férec, Claude</creatorcontrib><creatorcontrib>Liao, Zhuan</creatorcontrib><creatorcontrib>Chen, Jian‐Min</creatorcontrib><title>First estimate of the scale of canonical 5′ splice site GT&gt;GC variants capable of generating wild‐type transcripts</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>It has long been known that canonical 5′ splice site (5′SS) GT&gt;GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5′SSs capable of generating wild‐type transcripts in the case of GT&gt;GC substitutions remains unknown. Herein, combining data derived from a meta‐analysis of 45 human disease‐causing 5′SS GT&gt;GC variants and a cell culture‐based full‐length gene splicing assay of 103 5′SS GT&gt;GC substitutions, we estimate that ~15–18% of canonical GT 5′SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5′SSs in which substitution of GT by GC‐generated normal transcripts exhibit stronger complementarity to the 5′ end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild‐type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5′SS GT&gt;GC variants that generated wild‐type transcripts from those that did not. Our findings imply that 5′SS GT&gt;GC variants in human disease genes may not invariably be pathogenic. Based upon complementary data from the meta‐analysis of 45 disease‐causing 5′SS GT&gt;GC variants and the cell culture‐based full‐length gene splicing analysis of 103 5′SS GT&gt;GC substitutions, we have provided a first estimate of ~15–18% for the proportion of canonical GT 5′SSs that are capable of generating between 1% and 84% normal transcripts in case of the substitution of GT by GC. Given that even the retention of 5% normal transcripts can significantly ameliorate a patient's clinical phenotype, our findings imply the potential existence of hundreds or even thousands of disease‐causing 5′SS GT&gt;GC variants that may underlie relatively mild clinical phenotypes. As 5′SS GT&gt;GC variants can also give rise to relatively high levels of wild‐type transcripts, our findings imply that 5′SS GT&gt;GC variants may not invariably be pathogenic in disease‐causative or disease‐associated genes.</description><subject>Alternative Splicing</subject><subject>Base Sequence</subject><subject>canonical 5′ splice site</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Complementarity</subject><subject>Computational Biology - methods</subject><subject>Databases, Nucleic Acid</subject><subject>Exons</subject><subject>full‐length gene splicing assay</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>genotype and phenotype relationship</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>human gene mutation database</subject><subject>Human genetics</subject><subject>human inherited disease</subject><subject>Humans</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>noncanonical splice donor site</subject><subject>Nucleotide Motifs</subject><subject>Phenotypes</subject><subject>Position-Specific Scoring Matrices</subject><subject>RNA Splice Sites</subject><subject>Sequence Analysis, DNA</subject><subject>snRNA</subject><subject>Splicing</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O4zAUhS3EaPiZ2fAAyBIbGCmMf2In2SBVFW1HKmJD15bj2tQoTYLtFHXHI_AsPBJPgtMwLFiwsu-5n4987wHgBKNLjBD5u-rW3SWhOcF74BCjIk-inO73d1YkWVakB-DI-weEUM4Y_QkOKMYUF4wegs3EOh-g9sGuZdCwMTCsNPRKVrtCybqpbawge3t-hb6trIptG9Hp3dV0DDfSWVkHH8lWlsOje11rJ4Ot7-GTrZZvzy9h22oYnKy9crYN_hf4YWTl9e-P8xgsJtd341kyv53-G4_miUpJhhNFES-XWcmKwmDFsWFcF7TULCrIpIb2fU1KkxFZGoI045xGgJNcZSRL6TG4GHxXshKtizO6rWikFbPRXPQaIjTjcRMbHNnzgW1d89jFjYi19UpXlax103lBCCWYEM569OwL-tB0ro6TRKrIcZ7zvKf-DJRyjfdOm88fYCT65ESfnNglF-HTD8uuXOvlJ_o_qgjgAYgr1dtvrMRscbMYTN8BYP2kIQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Lin, Jin‐Huan</creator><creator>Tang, Xin‐Ying</creator><creator>Boulling, Arnaud</creator><creator>Zou, Wen‐Bin</creator><creator>Masson, Emmanuelle</creator><creator>Fichou, Yann</creator><creator>Raud, Loann</creator><creator>Le Tertre, Marlène</creator><creator>Deng, Shun‐Jiang</creator><creator>Berlivet, Isabelle</creator><creator>Ka, Chandran</creator><creator>Mort, Matthew</creator><creator>Hayden, Matthew</creator><creator>Leman, Raphaël</creator><creator>Houdayer, Claude</creator><creator>Le Gac, Gerald</creator><creator>Cooper, David N.</creator><creator>Li, Zhao‐Shen</creator><creator>Férec, Claude</creator><creator>Liao, Zhuan</creator><creator>Chen, Jian‐Min</creator><general>Hindawi Limited</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2424-3969</orcidid><orcidid>https://orcid.org/0000-0001-8506-8159</orcidid><orcidid>https://orcid.org/0000-0002-5104-9125</orcidid><orcidid>https://orcid.org/0000-0003-3236-7280</orcidid><orcidid>https://orcid.org/0000-0001-7747-7876</orcidid><orcidid>https://orcid.org/0000-0003-1978-7133</orcidid><orcidid>https://orcid.org/0000-0001-9777-523X</orcidid><orcidid>https://orcid.org/0000-0002-5190-0389</orcidid><orcidid>https://orcid.org/0000-0002-7219-9886</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid></search><sort><creationdate>201910</creationdate><title>First estimate of the scale of canonical 5′ splice site GT&gt;GC variants capable of generating wild‐type transcripts</title><author>Lin, Jin‐Huan ; Tang, Xin‐Ying ; Boulling, Arnaud ; Zou, Wen‐Bin ; Masson, Emmanuelle ; Fichou, Yann ; Raud, Loann ; Le Tertre, Marlène ; Deng, Shun‐Jiang ; Berlivet, Isabelle ; Ka, Chandran ; Mort, Matthew ; Hayden, Matthew ; Leman, Raphaël ; Houdayer, Claude ; Le Gac, Gerald ; Cooper, David N. ; Li, Zhao‐Shen ; Férec, Claude ; Liao, Zhuan ; Chen, Jian‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-c306bd7b599f1c61f56e93be5b590f4f3306be2bf72abf20e566393b628c72743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative Splicing</topic><topic>Base Sequence</topic><topic>canonical 5′ splice site</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Complementarity</topic><topic>Computational Biology - methods</topic><topic>Databases, Nucleic Acid</topic><topic>Exons</topic><topic>full‐length gene splicing assay</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>genotype and phenotype relationship</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>human gene mutation database</topic><topic>Human genetics</topic><topic>human inherited disease</topic><topic>Humans</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>noncanonical splice donor site</topic><topic>Nucleotide Motifs</topic><topic>Phenotypes</topic><topic>Position-Specific Scoring Matrices</topic><topic>RNA Splice Sites</topic><topic>Sequence Analysis, DNA</topic><topic>snRNA</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jin‐Huan</creatorcontrib><creatorcontrib>Tang, Xin‐Ying</creatorcontrib><creatorcontrib>Boulling, Arnaud</creatorcontrib><creatorcontrib>Zou, Wen‐Bin</creatorcontrib><creatorcontrib>Masson, Emmanuelle</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Raud, Loann</creatorcontrib><creatorcontrib>Le Tertre, Marlène</creatorcontrib><creatorcontrib>Deng, Shun‐Jiang</creatorcontrib><creatorcontrib>Berlivet, Isabelle</creatorcontrib><creatorcontrib>Ka, Chandran</creatorcontrib><creatorcontrib>Mort, Matthew</creatorcontrib><creatorcontrib>Hayden, Matthew</creatorcontrib><creatorcontrib>Leman, Raphaël</creatorcontrib><creatorcontrib>Houdayer, Claude</creatorcontrib><creatorcontrib>Le Gac, Gerald</creatorcontrib><creatorcontrib>Cooper, David N.</creatorcontrib><creatorcontrib>Li, Zhao‐Shen</creatorcontrib><creatorcontrib>Férec, Claude</creatorcontrib><creatorcontrib>Liao, Zhuan</creatorcontrib><creatorcontrib>Chen, Jian‐Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jin‐Huan</au><au>Tang, Xin‐Ying</au><au>Boulling, Arnaud</au><au>Zou, Wen‐Bin</au><au>Masson, Emmanuelle</au><au>Fichou, Yann</au><au>Raud, Loann</au><au>Le Tertre, Marlène</au><au>Deng, Shun‐Jiang</au><au>Berlivet, Isabelle</au><au>Ka, Chandran</au><au>Mort, Matthew</au><au>Hayden, Matthew</au><au>Leman, Raphaël</au><au>Houdayer, Claude</au><au>Le Gac, Gerald</au><au>Cooper, David N.</au><au>Li, Zhao‐Shen</au><au>Férec, Claude</au><au>Liao, Zhuan</au><au>Chen, Jian‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First estimate of the scale of canonical 5′ splice site GT&gt;GC variants capable of generating wild‐type transcripts</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2019-10</date><risdate>2019</risdate><volume>40</volume><issue>10</issue><spage>1856</spage><epage>1873</epage><pages>1856-1873</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>It has long been known that canonical 5′ splice site (5′SS) GT&gt;GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5′SSs capable of generating wild‐type transcripts in the case of GT&gt;GC substitutions remains unknown. Herein, combining data derived from a meta‐analysis of 45 human disease‐causing 5′SS GT&gt;GC variants and a cell culture‐based full‐length gene splicing assay of 103 5′SS GT&gt;GC substitutions, we estimate that ~15–18% of canonical GT 5′SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5′SSs in which substitution of GT by GC‐generated normal transcripts exhibit stronger complementarity to the 5′ end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild‐type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5′SS GT&gt;GC variants that generated wild‐type transcripts from those that did not. Our findings imply that 5′SS GT&gt;GC variants in human disease genes may not invariably be pathogenic. Based upon complementary data from the meta‐analysis of 45 disease‐causing 5′SS GT&gt;GC variants and the cell culture‐based full‐length gene splicing analysis of 103 5′SS GT&gt;GC substitutions, we have provided a first estimate of ~15–18% for the proportion of canonical GT 5′SSs that are capable of generating between 1% and 84% normal transcripts in case of the substitution of GT by GC. Given that even the retention of 5% normal transcripts can significantly ameliorate a patient's clinical phenotype, our findings imply the potential existence of hundreds or even thousands of disease‐causing 5′SS GT&gt;GC variants that may underlie relatively mild clinical phenotypes. As 5′SS GT&gt;GC variants can also give rise to relatively high levels of wild‐type transcripts, our findings imply that 5′SS GT&gt;GC variants may not invariably be pathogenic in disease‐causative or disease‐associated genes.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>31131953</pmid><doi>10.1002/humu.23821</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2424-3969</orcidid><orcidid>https://orcid.org/0000-0001-8506-8159</orcidid><orcidid>https://orcid.org/0000-0002-5104-9125</orcidid><orcidid>https://orcid.org/0000-0003-3236-7280</orcidid><orcidid>https://orcid.org/0000-0001-7747-7876</orcidid><orcidid>https://orcid.org/0000-0003-1978-7133</orcidid><orcidid>https://orcid.org/0000-0001-9777-523X</orcidid><orcidid>https://orcid.org/0000-0002-5190-0389</orcidid><orcidid>https://orcid.org/0000-0002-7219-9886</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2019-10, Vol.40 (10), p.1856-1873
issn 1059-7794
1098-1004
language eng
recordid cdi_hal_primary_oai_HAL_hal_02376953v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alternative Splicing
Base Sequence
canonical 5′ splice site
Cell culture
Cells, Cultured
Complementarity
Computational Biology - methods
Databases, Nucleic Acid
Exons
full‐length gene splicing assay
Gene Expression Profiling
Gene Expression Regulation
Genetic Variation
Genetics
genotype and phenotype relationship
High-Throughput Nucleotide Sequencing
human gene mutation database
Human genetics
human inherited disease
Humans
Introns
Life Sciences
noncanonical splice donor site
Nucleotide Motifs
Phenotypes
Position-Specific Scoring Matrices
RNA Splice Sites
Sequence Analysis, DNA
snRNA
Splicing
title First estimate of the scale of canonical 5′ splice site GT>GC variants capable of generating wild‐type transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20estimate%20of%20the%20scale%20of%20canonical%205%E2%80%B2%20splice%20site%20GT%3EGC%20variants%20capable%20of%20generating%20wild%E2%80%90type%20transcripts&rft.jtitle=Human%20mutation&rft.au=Lin,%20Jin%E2%80%90Huan&rft.date=2019-10&rft.volume=40&rft.issue=10&rft.spage=1856&rft.epage=1873&rft.pages=1856-1873&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23821&rft_dat=%3Cproquest_hal_p%3E2232122651%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298188681&rft_id=info:pmid/31131953&rfr_iscdi=true