Hybrid constitutive modeling: data-driven learning of corrections to plasticity models

In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of material forming 2019-07, Vol.12 (4), p.717-725
Hauptverfasser: Ibáñez, Rubén, Abisset-Chavanne, Emmanuelle, González, David, Duval, Jean-Louis, Cueto, Elias, Chinesta, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 4
container_start_page 717
container_title International journal of material forming
container_volume 12
creator Ibáñez, Rubén
Abisset-Chavanne, Emmanuelle
González, David
Duval, Jean-Louis
Cueto, Elias
Chinesta, Francisco
description In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling.
doi_str_mv 10.1007/s12289-018-1448-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02375057v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250630560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-98508a948c74346d38350551d7543015d172729d583af15c75f014980f80f9ee3</originalsourceid><addsrcrecordid>eNp1kM1KAzEURgdRsNQ-gLsBVy6iN3-TxF0paoWCG3Ub4iRTU6YzNUlL-_amjNSVIZBwOefj8hXFNYY7DCDuIyZEKgRYIsyYRPuzYoRVBagimJ2f_lBdFpMYV5APJUIQNio-5ofP4G1Z911MPm2T37ly3VvX-m75UFqTDLIhD7uydSZ0eVr2TcZDcHXy2SpTX25ak-3ap8PgxqviojFtdJPfd1y8Pz2-zeZo8fr8MpsuUE0VTUhJDtIoJmvBKKsslZQD59gKzihgbrEggijLJTUN5rXgDWCmJDT5KufouLgdcr9MqzfBr0046N54PZ8u9HEGhIocKXY4szcDuwn999bFpFf9NnR5PU0Ih4oCryBTeKDq0McYXHOKxaCPbeuhbZ3b1se29T47ZHBiZrulC3_J_0s_Q22Aqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250630560</pqid></control><display><type>article</type><title>Hybrid constitutive modeling: data-driven learning of corrections to plasticity models</title><source>SpringerNature Journals</source><creator>Ibáñez, Rubén ; Abisset-Chavanne, Emmanuelle ; González, David ; Duval, Jean-Louis ; Cueto, Elias ; Chinesta, Francisco</creator><creatorcontrib>Ibáñez, Rubén ; Abisset-Chavanne, Emmanuelle ; González, David ; Duval, Jean-Louis ; Cueto, Elias ; Chinesta, Francisco</creatorcontrib><description>In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-018-1448-x</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Constitutive models ; Engineering ; Engineering Sciences ; Knowledge acquisition ; Machine learning ; Machines ; Manufacturing ; Materials Science ; Mathematical models ; Mechanical Engineering ; Modelling ; Original Research ; Processes</subject><ispartof>International journal of material forming, 2019-07, Vol.12 (4), p.717-725</ispartof><rights>Springer-Verlag France SAS, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-98508a948c74346d38350551d7543015d172729d583af15c75f014980f80f9ee3</citedby><cites>FETCH-LOGICAL-c393t-98508a948c74346d38350551d7543015d172729d583af15c75f014980f80f9ee3</cites><orcidid>0000-0002-6272-3429 ; 0000-0003-4623-7305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-018-1448-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-018-1448-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02375057$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibáñez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>González, David</creatorcontrib><creatorcontrib>Duval, Jean-Louis</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><title>Hybrid constitutive modeling: data-driven learning of corrections to plasticity models</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling.</description><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Constitutive models</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Knowledge acquisition</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Modelling</subject><subject>Original Research</subject><subject>Processes</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURgdRsNQ-gLsBVy6iN3-TxF0paoWCG3Ub4iRTU6YzNUlL-_amjNSVIZBwOefj8hXFNYY7DCDuIyZEKgRYIsyYRPuzYoRVBagimJ2f_lBdFpMYV5APJUIQNio-5ofP4G1Z911MPm2T37ly3VvX-m75UFqTDLIhD7uydSZ0eVr2TcZDcHXy2SpTX25ak-3ap8PgxqviojFtdJPfd1y8Pz2-zeZo8fr8MpsuUE0VTUhJDtIoJmvBKKsslZQD59gKzihgbrEggijLJTUN5rXgDWCmJDT5KufouLgdcr9MqzfBr0046N54PZ8u9HEGhIocKXY4szcDuwn999bFpFf9NnR5PU0Ih4oCryBTeKDq0McYXHOKxaCPbeuhbZ3b1se29T47ZHBiZrulC3_J_0s_Q22Aqg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ibáñez, Rubén</creator><creator>Abisset-Chavanne, Emmanuelle</creator><creator>González, David</creator><creator>Duval, Jean-Louis</creator><creator>Cueto, Elias</creator><creator>Chinesta, Francisco</creator><general>Springer Paris</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0003-4623-7305</orcidid></search><sort><creationdate>20190701</creationdate><title>Hybrid constitutive modeling: data-driven learning of corrections to plasticity models</title><author>Ibáñez, Rubén ; Abisset-Chavanne, Emmanuelle ; González, David ; Duval, Jean-Louis ; Cueto, Elias ; Chinesta, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-98508a948c74346d38350551d7543015d172729d583af15c75f014980f80f9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Constitutive models</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Knowledge acquisition</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Modelling</topic><topic>Original Research</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibáñez, Rubén</creatorcontrib><creatorcontrib>Abisset-Chavanne, Emmanuelle</creatorcontrib><creatorcontrib>González, David</creatorcontrib><creatorcontrib>Duval, Jean-Louis</creatorcontrib><creatorcontrib>Cueto, Elias</creatorcontrib><creatorcontrib>Chinesta, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibáñez, Rubén</au><au>Abisset-Chavanne, Emmanuelle</au><au>González, David</au><au>Duval, Jean-Louis</au><au>Cueto, Elias</au><au>Chinesta, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid constitutive modeling: data-driven learning of corrections to plasticity models</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>717</spage><epage>725</epage><pages>717-725</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-018-1448-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6272-3429</orcidid><orcidid>https://orcid.org/0000-0003-4623-7305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2019-07, Vol.12 (4), p.717-725
issn 1960-6206
1960-6214
language eng
recordid cdi_hal_primary_oai_HAL_hal_02375057v1
source SpringerNature Journals
subjects CAE) and Design
Computational Intelligence
Computer-Aided Engineering (CAD
Constitutive models
Engineering
Engineering Sciences
Knowledge acquisition
Machine learning
Machines
Manufacturing
Materials Science
Mathematical models
Mechanical Engineering
Modelling
Original Research
Processes
title Hybrid constitutive modeling: data-driven learning of corrections to plasticity models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20constitutive%20modeling:%20data-driven%20learning%20of%20corrections%20to%20plasticity%20models&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Ib%C3%A1%C3%B1ez,%20Rub%C3%A9n&rft.date=2019-07-01&rft.volume=12&rft.issue=4&rft.spage=717&rft.epage=725&rft.pages=717-725&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-018-1448-x&rft_dat=%3Cproquest_hal_p%3E2250630560%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250630560&rft_id=info:pmid/&rfr_iscdi=true