Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect
We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the diff...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2019-07, Vol.124 (7), p.7081-7104 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7104 |
---|---|
container_issue | 7 |
container_start_page | 7081 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 124 |
creator | Candela, Thibault Osinga, Sander Ampuero, Jean‐Paul Wassing, Brecht Pluymaekers, Maarten Fokker, Peter A. Wees, Jan‐Diederik Waal, Hans A. Muntendam‐Bos, Annemarie G. |
description | We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate.
Key Points
Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach
Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process
The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate |
doi_str_mv | 10.1029/2018JB016670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02372699v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275695265</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdRUNSdDxBwJVhNMpOfcaet1kpF8GcdMklGI2lSJxmlOzfufUafxJSKuDKL5ObwnXsvnKLYQ_AIQVwfY4j41RlElDK4VmxhROtBXRK6_lujcrPYjfEZ5sOzhKqt4mNk5s4kG_zX--fE614ZDe6MjTOrbFoAmUB6MmDcBW_9o_FgLCO4sMbpEzAMvQuzBtzKZLJbep3vu5R_4Dpo4yKYeOV6nY1gZNvWdMYnK102zuZSLYeC8yyrtFNstNJFs_vzbhcPF-f3w8vB9GY8GZ5OB7KqCB9oyMsaVyVHhCupCVaI1VJxhFWLKWKSIs4RbxrWYNZWkDcYKi0JazmqmJHldnGw6vsknZh3dia7hQjSisvTqVhqEJcM07p-RZndX7HzLrz0JibxHPrO5_UExozQmmBKMnW4olQXYuxM-9sWQbHMRfzNJePlCn-zziz-ZcXV-PaM5AB5-Q0ZzZBT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275695265</pqid></control><display><type>article</type><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</creator><creatorcontrib>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</creatorcontrib><description>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate.
Key Points
Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach
Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process
The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016670</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Compaction ; Depletion ; Earth Sciences ; Earthquake hazards ; Earthquakes ; Evolution ; Gas production ; Geomechanics ; Geophysics ; Induced Seismicity ; Mathematical models ; Nucleation ; Offsets ; Oil and gas fields ; Oil and gas production ; Parameters ; Phase transitions ; Reservoir depletion ; Sciences of the Universe ; Seismic activity ; Seismicity ; Spatial variability ; Spatial variations ; Stressing ; Time lag</subject><ispartof>Journal of geophysical research. Solid earth, 2019-07, Vol.124 (7), p.7081-7104</ispartof><rights>2019. The Authors.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</citedby><cites>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</cites><orcidid>0000-0002-4827-7987 ; 0000-0003-4159-7432 ; 0000-0003-0770-955X ; 0000-0002-0110-2936 ; 0000-0002-8450-0613 ; 0000-0001-9366-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB016670$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB016670$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02372699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Candela, Thibault</creatorcontrib><creatorcontrib>Osinga, Sander</creatorcontrib><creatorcontrib>Ampuero, Jean‐Paul</creatorcontrib><creatorcontrib>Wassing, Brecht</creatorcontrib><creatorcontrib>Pluymaekers, Maarten</creatorcontrib><creatorcontrib>Fokker, Peter A.</creatorcontrib><creatorcontrib>Wees, Jan‐Diederik</creatorcontrib><creatorcontrib>Waal, Hans A.</creatorcontrib><creatorcontrib>Muntendam‐Bos, Annemarie G.</creatorcontrib><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><title>Journal of geophysical research. Solid earth</title><description>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate.
Key Points
Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach
Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process
The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</description><subject>Compaction</subject><subject>Depletion</subject><subject>Earth Sciences</subject><subject>Earthquake hazards</subject><subject>Earthquakes</subject><subject>Evolution</subject><subject>Gas production</subject><subject>Geomechanics</subject><subject>Geophysics</subject><subject>Induced Seismicity</subject><subject>Mathematical models</subject><subject>Nucleation</subject><subject>Offsets</subject><subject>Oil and gas fields</subject><subject>Oil and gas production</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Reservoir depletion</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismicity</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Stressing</subject><subject>Time lag</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc1KAzEUhQdRUNSdDxBwJVhNMpOfcaet1kpF8GcdMklGI2lSJxmlOzfufUafxJSKuDKL5ObwnXsvnKLYQ_AIQVwfY4j41RlElDK4VmxhROtBXRK6_lujcrPYjfEZ5sOzhKqt4mNk5s4kG_zX--fE614ZDe6MjTOrbFoAmUB6MmDcBW_9o_FgLCO4sMbpEzAMvQuzBtzKZLJbep3vu5R_4Dpo4yKYeOV6nY1gZNvWdMYnK102zuZSLYeC8yyrtFNstNJFs_vzbhcPF-f3w8vB9GY8GZ5OB7KqCB9oyMsaVyVHhCupCVaI1VJxhFWLKWKSIs4RbxrWYNZWkDcYKi0JazmqmJHldnGw6vsknZh3dia7hQjSisvTqVhqEJcM07p-RZndX7HzLrz0JibxHPrO5_UExozQmmBKMnW4olQXYuxM-9sWQbHMRfzNJePlCn-zziz-ZcXV-PaM5AB5-Q0ZzZBT</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Candela, Thibault</creator><creator>Osinga, Sander</creator><creator>Ampuero, Jean‐Paul</creator><creator>Wassing, Brecht</creator><creator>Pluymaekers, Maarten</creator><creator>Fokker, Peter A.</creator><creator>Wees, Jan‐Diederik</creator><creator>Waal, Hans A.</creator><creator>Muntendam‐Bos, Annemarie G.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4827-7987</orcidid><orcidid>https://orcid.org/0000-0003-4159-7432</orcidid><orcidid>https://orcid.org/0000-0003-0770-955X</orcidid><orcidid>https://orcid.org/0000-0002-0110-2936</orcidid><orcidid>https://orcid.org/0000-0002-8450-0613</orcidid><orcidid>https://orcid.org/0000-0001-9366-1497</orcidid></search><sort><creationdate>201907</creationdate><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><author>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compaction</topic><topic>Depletion</topic><topic>Earth Sciences</topic><topic>Earthquake hazards</topic><topic>Earthquakes</topic><topic>Evolution</topic><topic>Gas production</topic><topic>Geomechanics</topic><topic>Geophysics</topic><topic>Induced Seismicity</topic><topic>Mathematical models</topic><topic>Nucleation</topic><topic>Offsets</topic><topic>Oil and gas fields</topic><topic>Oil and gas production</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Reservoir depletion</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismicity</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Stressing</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candela, Thibault</creatorcontrib><creatorcontrib>Osinga, Sander</creatorcontrib><creatorcontrib>Ampuero, Jean‐Paul</creatorcontrib><creatorcontrib>Wassing, Brecht</creatorcontrib><creatorcontrib>Pluymaekers, Maarten</creatorcontrib><creatorcontrib>Fokker, Peter A.</creatorcontrib><creatorcontrib>Wees, Jan‐Diederik</creatorcontrib><creatorcontrib>Waal, Hans A.</creatorcontrib><creatorcontrib>Muntendam‐Bos, Annemarie G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candela, Thibault</au><au>Osinga, Sander</au><au>Ampuero, Jean‐Paul</au><au>Wassing, Brecht</au><au>Pluymaekers, Maarten</au><au>Fokker, Peter A.</au><au>Wees, Jan‐Diederik</au><au>Waal, Hans A.</au><au>Muntendam‐Bos, Annemarie G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-07</date><risdate>2019</risdate><volume>124</volume><issue>7</issue><spage>7081</spage><epage>7104</epage><pages>7081-7104</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate.
Key Points
Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach
Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process
The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016670</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-4827-7987</orcidid><orcidid>https://orcid.org/0000-0003-4159-7432</orcidid><orcidid>https://orcid.org/0000-0003-0770-955X</orcidid><orcidid>https://orcid.org/0000-0002-0110-2936</orcidid><orcidid>https://orcid.org/0000-0002-8450-0613</orcidid><orcidid>https://orcid.org/0000-0001-9366-1497</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2019-07, Vol.124 (7), p.7081-7104 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02372699v1 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Compaction Depletion Earth Sciences Earthquake hazards Earthquakes Evolution Gas production Geomechanics Geophysics Induced Seismicity Mathematical models Nucleation Offsets Oil and gas fields Oil and gas production Parameters Phase transitions Reservoir depletion Sciences of the Universe Seismic activity Seismicity Spatial variability Spatial variations Stressing Time lag |
title | Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depletion%E2%80%90Induced%20Seismicity%20at%20the%20Groningen%20Gas%20Field:%20Coulomb%20Rate%E2%80%90and%E2%80%90State%20Models%20Including%20Differential%20Compaction%20Effect&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Candela,%20Thibault&rft.date=2019-07&rft.volume=124&rft.issue=7&rft.spage=7081&rft.epage=7104&rft.pages=7081-7104&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016670&rft_dat=%3Cproquest_hal_p%3E2275695265%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275695265&rft_id=info:pmid/&rfr_iscdi=true |