Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect

We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2019-07, Vol.124 (7), p.7081-7104
Hauptverfasser: Candela, Thibault, Osinga, Sander, Ampuero, Jean‐Paul, Wassing, Brecht, Pluymaekers, Maarten, Fokker, Peter A., Wees, Jan‐Diederik, Waal, Hans A., Muntendam‐Bos, Annemarie G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7104
container_issue 7
container_start_page 7081
container_title Journal of geophysical research. Solid earth
container_volume 124
creator Candela, Thibault
Osinga, Sander
Ampuero, Jean‐Paul
Wassing, Brecht
Pluymaekers, Maarten
Fokker, Peter A.
Wees, Jan‐Diederik
Waal, Hans A.
Muntendam‐Bos, Annemarie G.
description We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate. Key Points Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate
doi_str_mv 10.1029/2018JB016670
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02372699v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275695265</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdRUNSdDxBwJVhNMpOfcaet1kpF8GcdMklGI2lSJxmlOzfufUafxJSKuDKL5ObwnXsvnKLYQ_AIQVwfY4j41RlElDK4VmxhROtBXRK6_lujcrPYjfEZ5sOzhKqt4mNk5s4kG_zX--fE614ZDe6MjTOrbFoAmUB6MmDcBW_9o_FgLCO4sMbpEzAMvQuzBtzKZLJbep3vu5R_4Dpo4yKYeOV6nY1gZNvWdMYnK102zuZSLYeC8yyrtFNstNJFs_vzbhcPF-f3w8vB9GY8GZ5OB7KqCB9oyMsaVyVHhCupCVaI1VJxhFWLKWKSIs4RbxrWYNZWkDcYKi0JazmqmJHldnGw6vsknZh3dia7hQjSisvTqVhqEJcM07p-RZndX7HzLrz0JibxHPrO5_UExozQmmBKMnW4olQXYuxM-9sWQbHMRfzNJePlCn-zziz-ZcXV-PaM5AB5-Q0ZzZBT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275695265</pqid></control><display><type>article</type><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</creator><creatorcontrib>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</creatorcontrib><description>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate. Key Points Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016670</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Compaction ; Depletion ; Earth Sciences ; Earthquake hazards ; Earthquakes ; Evolution ; Gas production ; Geomechanics ; Geophysics ; Induced Seismicity ; Mathematical models ; Nucleation ; Offsets ; Oil and gas fields ; Oil and gas production ; Parameters ; Phase transitions ; Reservoir depletion ; Sciences of the Universe ; Seismic activity ; Seismicity ; Spatial variability ; Spatial variations ; Stressing ; Time lag</subject><ispartof>Journal of geophysical research. Solid earth, 2019-07, Vol.124 (7), p.7081-7104</ispartof><rights>2019. The Authors.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</citedby><cites>FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</cites><orcidid>0000-0002-4827-7987 ; 0000-0003-4159-7432 ; 0000-0003-0770-955X ; 0000-0002-0110-2936 ; 0000-0002-8450-0613 ; 0000-0001-9366-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB016670$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB016670$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02372699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Candela, Thibault</creatorcontrib><creatorcontrib>Osinga, Sander</creatorcontrib><creatorcontrib>Ampuero, Jean‐Paul</creatorcontrib><creatorcontrib>Wassing, Brecht</creatorcontrib><creatorcontrib>Pluymaekers, Maarten</creatorcontrib><creatorcontrib>Fokker, Peter A.</creatorcontrib><creatorcontrib>Wees, Jan‐Diederik</creatorcontrib><creatorcontrib>Waal, Hans A.</creatorcontrib><creatorcontrib>Muntendam‐Bos, Annemarie G.</creatorcontrib><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><title>Journal of geophysical research. Solid earth</title><description>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate. Key Points Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</description><subject>Compaction</subject><subject>Depletion</subject><subject>Earth Sciences</subject><subject>Earthquake hazards</subject><subject>Earthquakes</subject><subject>Evolution</subject><subject>Gas production</subject><subject>Geomechanics</subject><subject>Geophysics</subject><subject>Induced Seismicity</subject><subject>Mathematical models</subject><subject>Nucleation</subject><subject>Offsets</subject><subject>Oil and gas fields</subject><subject>Oil and gas production</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Reservoir depletion</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismicity</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Stressing</subject><subject>Time lag</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc1KAzEUhQdRUNSdDxBwJVhNMpOfcaet1kpF8GcdMklGI2lSJxmlOzfufUafxJSKuDKL5ObwnXsvnKLYQ_AIQVwfY4j41RlElDK4VmxhROtBXRK6_lujcrPYjfEZ5sOzhKqt4mNk5s4kG_zX--fE614ZDe6MjTOrbFoAmUB6MmDcBW_9o_FgLCO4sMbpEzAMvQuzBtzKZLJbep3vu5R_4Dpo4yKYeOV6nY1gZNvWdMYnK102zuZSLYeC8yyrtFNstNJFs_vzbhcPF-f3w8vB9GY8GZ5OB7KqCB9oyMsaVyVHhCupCVaI1VJxhFWLKWKSIs4RbxrWYNZWkDcYKi0JazmqmJHldnGw6vsknZh3dia7hQjSisvTqVhqEJcM07p-RZndX7HzLrz0JibxHPrO5_UExozQmmBKMnW4olQXYuxM-9sWQbHMRfzNJePlCn-zziz-ZcXV-PaM5AB5-Q0ZzZBT</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Candela, Thibault</creator><creator>Osinga, Sander</creator><creator>Ampuero, Jean‐Paul</creator><creator>Wassing, Brecht</creator><creator>Pluymaekers, Maarten</creator><creator>Fokker, Peter A.</creator><creator>Wees, Jan‐Diederik</creator><creator>Waal, Hans A.</creator><creator>Muntendam‐Bos, Annemarie G.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4827-7987</orcidid><orcidid>https://orcid.org/0000-0003-4159-7432</orcidid><orcidid>https://orcid.org/0000-0003-0770-955X</orcidid><orcidid>https://orcid.org/0000-0002-0110-2936</orcidid><orcidid>https://orcid.org/0000-0002-8450-0613</orcidid><orcidid>https://orcid.org/0000-0001-9366-1497</orcidid></search><sort><creationdate>201907</creationdate><title>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</title><author>Candela, Thibault ; Osinga, Sander ; Ampuero, Jean‐Paul ; Wassing, Brecht ; Pluymaekers, Maarten ; Fokker, Peter A. ; Wees, Jan‐Diederik ; Waal, Hans A. ; Muntendam‐Bos, Annemarie G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4458-d08392438158cad52c179ac812cf2617a618818bb7b27f408b20cda57f8147ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compaction</topic><topic>Depletion</topic><topic>Earth Sciences</topic><topic>Earthquake hazards</topic><topic>Earthquakes</topic><topic>Evolution</topic><topic>Gas production</topic><topic>Geomechanics</topic><topic>Geophysics</topic><topic>Induced Seismicity</topic><topic>Mathematical models</topic><topic>Nucleation</topic><topic>Offsets</topic><topic>Oil and gas fields</topic><topic>Oil and gas production</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Reservoir depletion</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismicity</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Stressing</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candela, Thibault</creatorcontrib><creatorcontrib>Osinga, Sander</creatorcontrib><creatorcontrib>Ampuero, Jean‐Paul</creatorcontrib><creatorcontrib>Wassing, Brecht</creatorcontrib><creatorcontrib>Pluymaekers, Maarten</creatorcontrib><creatorcontrib>Fokker, Peter A.</creatorcontrib><creatorcontrib>Wees, Jan‐Diederik</creatorcontrib><creatorcontrib>Waal, Hans A.</creatorcontrib><creatorcontrib>Muntendam‐Bos, Annemarie G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candela, Thibault</au><au>Osinga, Sander</au><au>Ampuero, Jean‐Paul</au><au>Wassing, Brecht</au><au>Pluymaekers, Maarten</au><au>Fokker, Peter A.</au><au>Wees, Jan‐Diederik</au><au>Waal, Hans A.</au><au>Muntendam‐Bos, Annemarie G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-07</date><risdate>2019</risdate><volume>124</volume><issue>7</issue><spage>7081</spage><epage>7104</epage><pages>7081-7104</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>We implement a Coulomb rate‐and‐state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3‐D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate‐and‐state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate‐and‐state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate. Key Points Seismicity induced by Groningen gas depletion can be modelled by a Coulomb rate‐and‐state approach Characteristic periods of stress perturbations are much shorter than the inferred intrinsic time delay of the earthquake‐nucleation process The Groningen fault system in the two sub‐areas of interest is gradually becoming more sensitive to the stressing rate</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016670</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-4827-7987</orcidid><orcidid>https://orcid.org/0000-0003-4159-7432</orcidid><orcidid>https://orcid.org/0000-0003-0770-955X</orcidid><orcidid>https://orcid.org/0000-0002-0110-2936</orcidid><orcidid>https://orcid.org/0000-0002-8450-0613</orcidid><orcidid>https://orcid.org/0000-0001-9366-1497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2019-07, Vol.124 (7), p.7081-7104
issn 2169-9313
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_hal_02372699v1
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Compaction
Depletion
Earth Sciences
Earthquake hazards
Earthquakes
Evolution
Gas production
Geomechanics
Geophysics
Induced Seismicity
Mathematical models
Nucleation
Offsets
Oil and gas fields
Oil and gas production
Parameters
Phase transitions
Reservoir depletion
Sciences of the Universe
Seismic activity
Seismicity
Spatial variability
Spatial variations
Stressing
Time lag
title Depletion‐Induced Seismicity at the Groningen Gas Field: Coulomb Rate‐and‐State Models Including Differential Compaction Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depletion%E2%80%90Induced%20Seismicity%20at%20the%20Groningen%20Gas%20Field:%20Coulomb%20Rate%E2%80%90and%E2%80%90State%20Models%20Including%20Differential%20Compaction%20Effect&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Candela,%20Thibault&rft.date=2019-07&rft.volume=124&rft.issue=7&rft.spage=7081&rft.epage=7104&rft.pages=7081-7104&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016670&rft_dat=%3Cproquest_hal_p%3E2275695265%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275695265&rft_id=info:pmid/&rfr_iscdi=true