Duct modes damping through an adjustable electroacoustic liner under grazing incidence
This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeake...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2018-07, Vol.426, p.19-33 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Journal of sound and vibration |
container_volume | 426 |
creator | Boulandet, R. Lissek, H. Karkar, S. Collet, M. Matten, G. Ouisse, M. Versaevel, M. |
description | This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers. |
doi_str_mv | 10.1016/j.jsv.2018.04.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02371016v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18302281</els_id><sourcerecordid>2086827664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK7-AG8BTx5a36Rp2uJpWT9hwYuKt5Am6W5Kt1mTdkF_vSkrHr0kMMwM8z4IXRJICRB-06Zt2KcUSJkCSwGqIzQjUOVJmfPyGM0AKE0Yh49TdBZCC9HBMjZD73ejGvDWaROwltud7dd42Hg3rjdY9ljqdgyDrDuDTWfU4J1ULipW4c72xuOx1_Fde_k9JW2vrDa9MufopJFdMBe__xy9Pdy_Lp-S1cvj83KxShRjZEhKQouaZgXRWvNGg-FUckkrmVemYrwqowIqq4oaipoUTa1JHK51XrC8zhuezdH1oXcjO7Hzdiv9l3DSiqfFSkwaTO0R0J5E79XBu_PuczRhEK0bfR_nCQolL2nBOYsucnAp70LwpvmrJSCmJtGKiFpMqAUwEffEzO0hY-Kpe2u8CMpOGLT1EZrQzv6T_gEB74Zb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086827664</pqid></control><display><type>article</type><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><source>Elsevier ScienceDirect Journals</source><creator>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</creator><creatorcontrib>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</creatorcontrib><description>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.04.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic impedance ; Acoustics ; Active damping ; Active sound absorption ; Aircraft engines ; Attenuation ; Beamforming ; Broadband ; Computer simulation ; Design parameters ; Duct modes damping ; Ducts ; Ductwork ; Dumping ; Electroacoustic absorber ; Finite element method ; Lined duct ; Loudspeakers ; Mechanics ; Nacelles ; Octaves ; Physics ; Reactance ; Sound amplification ; Sound attenuation</subject><ispartof>Journal of sound and vibration, 2018-07, Vol.426, p.19-33</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jul 21, 2018</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</citedby><cites>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</cites><orcidid>0000-0002-0444-0535 ; 0000-0003-2049-0644 ; 0000-0001-5464-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.04.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02371016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulandet, R.</creatorcontrib><creatorcontrib>Lissek, H.</creatorcontrib><creatorcontrib>Karkar, S.</creatorcontrib><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Matten, G.</creatorcontrib><creatorcontrib>Ouisse, M.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><title>Journal of sound and vibration</title><description>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Active damping</subject><subject>Active sound absorption</subject><subject>Aircraft engines</subject><subject>Attenuation</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Design parameters</subject><subject>Duct modes damping</subject><subject>Ducts</subject><subject>Ductwork</subject><subject>Dumping</subject><subject>Electroacoustic absorber</subject><subject>Finite element method</subject><subject>Lined duct</subject><subject>Loudspeakers</subject><subject>Mechanics</subject><subject>Nacelles</subject><subject>Octaves</subject><subject>Physics</subject><subject>Reactance</subject><subject>Sound amplification</subject><subject>Sound attenuation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMouK7-AG8BTx5a36Rp2uJpWT9hwYuKt5Am6W5Kt1mTdkF_vSkrHr0kMMwM8z4IXRJICRB-06Zt2KcUSJkCSwGqIzQjUOVJmfPyGM0AKE0Yh49TdBZCC9HBMjZD73ejGvDWaROwltud7dd42Hg3rjdY9ljqdgyDrDuDTWfU4J1ULipW4c72xuOx1_Fde_k9JW2vrDa9MufopJFdMBe__xy9Pdy_Lp-S1cvj83KxShRjZEhKQouaZgXRWvNGg-FUckkrmVemYrwqowIqq4oaipoUTa1JHK51XrC8zhuezdH1oXcjO7Hzdiv9l3DSiqfFSkwaTO0R0J5E79XBu_PuczRhEK0bfR_nCQolL2nBOYsucnAp70LwpvmrJSCmJtGKiFpMqAUwEffEzO0hY-Kpe2u8CMpOGLT1EZrQzv6T_gEB74Zb</recordid><startdate>20180721</startdate><enddate>20180721</enddate><creator>Boulandet, R.</creator><creator>Lissek, H.</creator><creator>Karkar, S.</creator><creator>Collet, M.</creator><creator>Matten, G.</creator><creator>Ouisse, M.</creator><creator>Versaevel, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0444-0535</orcidid><orcidid>https://orcid.org/0000-0003-2049-0644</orcidid><orcidid>https://orcid.org/0000-0001-5464-5283</orcidid></search><sort><creationdate>20180721</creationdate><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><author>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Active damping</topic><topic>Active sound absorption</topic><topic>Aircraft engines</topic><topic>Attenuation</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Design parameters</topic><topic>Duct modes damping</topic><topic>Ducts</topic><topic>Ductwork</topic><topic>Dumping</topic><topic>Electroacoustic absorber</topic><topic>Finite element method</topic><topic>Lined duct</topic><topic>Loudspeakers</topic><topic>Mechanics</topic><topic>Nacelles</topic><topic>Octaves</topic><topic>Physics</topic><topic>Reactance</topic><topic>Sound amplification</topic><topic>Sound attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulandet, R.</creatorcontrib><creatorcontrib>Lissek, H.</creatorcontrib><creatorcontrib>Karkar, S.</creatorcontrib><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Matten, G.</creatorcontrib><creatorcontrib>Ouisse, M.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulandet, R.</au><au>Lissek, H.</au><au>Karkar, S.</au><au>Collet, M.</au><au>Matten, G.</au><au>Ouisse, M.</au><au>Versaevel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-07-21</date><risdate>2018</risdate><volume>426</volume><spage>19</spage><epage>33</epage><pages>19-33</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.04.009</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0444-0535</orcidid><orcidid>https://orcid.org/0000-0003-2049-0644</orcidid><orcidid>https://orcid.org/0000-0001-5464-5283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2018-07, Vol.426, p.19-33 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02371016v1 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic impedance Acoustics Active damping Active sound absorption Aircraft engines Attenuation Beamforming Broadband Computer simulation Design parameters Duct modes damping Ducts Ductwork Dumping Electroacoustic absorber Finite element method Lined duct Loudspeakers Mechanics Nacelles Octaves Physics Reactance Sound amplification Sound attenuation |
title | Duct modes damping through an adjustable electroacoustic liner under grazing incidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duct%20modes%20damping%20through%20an%20adjustable%20electroacoustic%20liner%20under%20grazing%20incidence&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Boulandet,%20R.&rft.date=2018-07-21&rft.volume=426&rft.spage=19&rft.epage=33&rft.pages=19-33&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.04.009&rft_dat=%3Cproquest_hal_p%3E2086827664%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086827664&rft_id=info:pmid/&rft_els_id=S0022460X18302281&rfr_iscdi=true |