Duct modes damping through an adjustable electroacoustic liner under grazing incidence

This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2018-07, Vol.426, p.19-33
Hauptverfasser: Boulandet, R., Lissek, H., Karkar, S., Collet, M., Matten, G., Ouisse, M., Versaevel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 19
container_title Journal of sound and vibration
container_volume 426
creator Boulandet, R.
Lissek, H.
Karkar, S.
Collet, M.
Matten, G.
Ouisse, M.
Versaevel, M.
description This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.
doi_str_mv 10.1016/j.jsv.2018.04.009
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02371016v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18302281</els_id><sourcerecordid>2086827664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK7-AG8BTx5a36Rp2uJpWT9hwYuKt5Am6W5Kt1mTdkF_vSkrHr0kMMwM8z4IXRJICRB-06Zt2KcUSJkCSwGqIzQjUOVJmfPyGM0AKE0Yh49TdBZCC9HBMjZD73ejGvDWaROwltud7dd42Hg3rjdY9ljqdgyDrDuDTWfU4J1ULipW4c72xuOx1_Fde_k9JW2vrDa9MufopJFdMBe__xy9Pdy_Lp-S1cvj83KxShRjZEhKQouaZgXRWvNGg-FUckkrmVemYrwqowIqq4oaipoUTa1JHK51XrC8zhuezdH1oXcjO7Hzdiv9l3DSiqfFSkwaTO0R0J5E79XBu_PuczRhEK0bfR_nCQolL2nBOYsucnAp70LwpvmrJSCmJtGKiFpMqAUwEffEzO0hY-Kpe2u8CMpOGLT1EZrQzv6T_gEB74Zb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086827664</pqid></control><display><type>article</type><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><source>Elsevier ScienceDirect Journals</source><creator>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</creator><creatorcontrib>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</creatorcontrib><description>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.04.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic impedance ; Acoustics ; Active damping ; Active sound absorption ; Aircraft engines ; Attenuation ; Beamforming ; Broadband ; Computer simulation ; Design parameters ; Duct modes damping ; Ducts ; Ductwork ; Dumping ; Electroacoustic absorber ; Finite element method ; Lined duct ; Loudspeakers ; Mechanics ; Nacelles ; Octaves ; Physics ; Reactance ; Sound amplification ; Sound attenuation</subject><ispartof>Journal of sound and vibration, 2018-07, Vol.426, p.19-33</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jul 21, 2018</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</citedby><cites>FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</cites><orcidid>0000-0002-0444-0535 ; 0000-0003-2049-0644 ; 0000-0001-5464-5283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.04.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02371016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulandet, R.</creatorcontrib><creatorcontrib>Lissek, H.</creatorcontrib><creatorcontrib>Karkar, S.</creatorcontrib><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Matten, G.</creatorcontrib><creatorcontrib>Ouisse, M.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><title>Journal of sound and vibration</title><description>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Active damping</subject><subject>Active sound absorption</subject><subject>Aircraft engines</subject><subject>Attenuation</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Design parameters</subject><subject>Duct modes damping</subject><subject>Ducts</subject><subject>Ductwork</subject><subject>Dumping</subject><subject>Electroacoustic absorber</subject><subject>Finite element method</subject><subject>Lined duct</subject><subject>Loudspeakers</subject><subject>Mechanics</subject><subject>Nacelles</subject><subject>Octaves</subject><subject>Physics</subject><subject>Reactance</subject><subject>Sound amplification</subject><subject>Sound attenuation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMouK7-AG8BTx5a36Rp2uJpWT9hwYuKt5Am6W5Kt1mTdkF_vSkrHr0kMMwM8z4IXRJICRB-06Zt2KcUSJkCSwGqIzQjUOVJmfPyGM0AKE0Yh49TdBZCC9HBMjZD73ejGvDWaROwltud7dd42Hg3rjdY9ljqdgyDrDuDTWfU4J1ULipW4c72xuOx1_Fde_k9JW2vrDa9MufopJFdMBe__xy9Pdy_Lp-S1cvj83KxShRjZEhKQouaZgXRWvNGg-FUckkrmVemYrwqowIqq4oaipoUTa1JHK51XrC8zhuezdH1oXcjO7Hzdiv9l3DSiqfFSkwaTO0R0J5E79XBu_PuczRhEK0bfR_nCQolL2nBOYsucnAp70LwpvmrJSCmJtGKiFpMqAUwEffEzO0hY-Kpe2u8CMpOGLT1EZrQzv6T_gEB74Zb</recordid><startdate>20180721</startdate><enddate>20180721</enddate><creator>Boulandet, R.</creator><creator>Lissek, H.</creator><creator>Karkar, S.</creator><creator>Collet, M.</creator><creator>Matten, G.</creator><creator>Ouisse, M.</creator><creator>Versaevel, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0444-0535</orcidid><orcidid>https://orcid.org/0000-0003-2049-0644</orcidid><orcidid>https://orcid.org/0000-0001-5464-5283</orcidid></search><sort><creationdate>20180721</creationdate><title>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</title><author>Boulandet, R. ; Lissek, H. ; Karkar, S. ; Collet, M. ; Matten, G. ; Ouisse, M. ; Versaevel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-8127b2371ddd6fd0e62a6a29a59e946980e60c397b07b17fbd1009dd5745b5f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Active damping</topic><topic>Active sound absorption</topic><topic>Aircraft engines</topic><topic>Attenuation</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Design parameters</topic><topic>Duct modes damping</topic><topic>Ducts</topic><topic>Ductwork</topic><topic>Dumping</topic><topic>Electroacoustic absorber</topic><topic>Finite element method</topic><topic>Lined duct</topic><topic>Loudspeakers</topic><topic>Mechanics</topic><topic>Nacelles</topic><topic>Octaves</topic><topic>Physics</topic><topic>Reactance</topic><topic>Sound amplification</topic><topic>Sound attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulandet, R.</creatorcontrib><creatorcontrib>Lissek, H.</creatorcontrib><creatorcontrib>Karkar, S.</creatorcontrib><creatorcontrib>Collet, M.</creatorcontrib><creatorcontrib>Matten, G.</creatorcontrib><creatorcontrib>Ouisse, M.</creatorcontrib><creatorcontrib>Versaevel, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulandet, R.</au><au>Lissek, H.</au><au>Karkar, S.</au><au>Collet, M.</au><au>Matten, G.</au><au>Ouisse, M.</au><au>Versaevel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duct modes damping through an adjustable electroacoustic liner under grazing incidence</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-07-21</date><risdate>2018</risdate><volume>426</volume><spage>19</spage><epage>33</epage><pages>19-33</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.04.009</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0444-0535</orcidid><orcidid>https://orcid.org/0000-0003-2049-0644</orcidid><orcidid>https://orcid.org/0000-0001-5464-5283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2018-07, Vol.426, p.19-33
issn 0022-460X
1095-8568
language eng
recordid cdi_hal_primary_oai_HAL_hal_02371016v1
source Elsevier ScienceDirect Journals
subjects Acoustic impedance
Acoustics
Active damping
Active sound absorption
Aircraft engines
Attenuation
Beamforming
Broadband
Computer simulation
Design parameters
Duct modes damping
Ducts
Ductwork
Dumping
Electroacoustic absorber
Finite element method
Lined duct
Loudspeakers
Mechanics
Nacelles
Octaves
Physics
Reactance
Sound amplification
Sound attenuation
title Duct modes damping through an adjustable electroacoustic liner under grazing incidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duct%20modes%20damping%20through%20an%20adjustable%20electroacoustic%20liner%20under%20grazing%20incidence&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Boulandet,%20R.&rft.date=2018-07-21&rft.volume=426&rft.spage=19&rft.epage=33&rft.pages=19-33&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.04.009&rft_dat=%3Cproquest_hal_p%3E2086827664%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086827664&rft_id=info:pmid/&rft_els_id=S0022460X18302281&rfr_iscdi=true