Chondrule Formation by the Jovian Sweeping Secular Resonance
Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism f...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-10, Vol.883 (2), p.164 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 164 |
container_title | The Astrophysical journal |
container_volume | 883 |
creator | Gong, Munan Zheng, Xiaochen Lin, Douglas N. C. Silsbee, Kedron Baruteau, Clement Mao, Shude |
description | Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions. |
doi_str_mv | 10.3847/1538-4357/ab3e70 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02369612v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365776044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwVPgnVJ86sBL2NsThkITsFbSNPUdXRNTdrJ_ntTKvPk5T3el8_7vscXgGsE73FK-ARRnMYEUz5RGTYcnoDRUToFIwghiRnmH-fgwvttPyZCjMDDbGPr3HWViRbW7VRb2jrKDlG7MdGz3ZeqjtbfxjRl_Rmtje4q5aJX422tam0uwVmhKm-ufvsYvC_mb7NlvHp5fJpNV7EmFLahMsRUSjCDNBxFOqOpFlRAzFWW0SQTjLGECy1UkWQ5UjnhglIGscm1Khgeg9vBd6Mq2bhyp9xBWlXK5XQlew0mmAmGkj0K7M3ANs5-dca3cms7V4f3ZIAo5wwSEig4UNpZ750pjrYIyj5P2Ycn-_DkkGdYuRtWStv8ef6L_wCwAHQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365776044</pqid></control><display><type>article</type><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><source>IOP Publishing Free Content</source><creator>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</creator><creatorcontrib>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</creatorcontrib><description>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab3e70</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Asteroids ; Astrophysics ; Calcium ; Chondrule ; Computer simulation ; Depletion ; Earth and Planetary Astrophysics ; Eccentricity ; Heating ; Inclusions ; Jupiter ; Mathematical models ; Meteorites ; meteorites, meteors, meteoroids ; minor planets, asteroids: general ; Numerical simulations ; Orbital mechanics ; Physics ; Planet formation ; Planetary evolution ; Precursors ; Protoplanetary disks ; Rarefied gases ; Resonance ; shock waves ; Solar system ; Spheroids ; Sweeping</subject><ispartof>The Astrophysical journal, 2019-10, Vol.883 (2), p.164</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 01, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</citedby><cites>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</cites><orcidid>0000-0003-1613-6263 ; 0000-0003-1572-0505 ; 0000-0002-7814-9185 ; 0000-0001-8317-2788 ; 0000-0002-2672-3456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab3e70/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab3e70$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-02369612$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Munan</creatorcontrib><creatorcontrib>Zheng, Xiaochen</creatorcontrib><creatorcontrib>Lin, Douglas N. C.</creatorcontrib><creatorcontrib>Silsbee, Kedron</creatorcontrib><creatorcontrib>Baruteau, Clement</creatorcontrib><creatorcontrib>Mao, Shude</creatorcontrib><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</description><subject>Aluminum</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Calcium</subject><subject>Chondrule</subject><subject>Computer simulation</subject><subject>Depletion</subject><subject>Earth and Planetary Astrophysics</subject><subject>Eccentricity</subject><subject>Heating</subject><subject>Inclusions</subject><subject>Jupiter</subject><subject>Mathematical models</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>minor planets, asteroids: general</subject><subject>Numerical simulations</subject><subject>Orbital mechanics</subject><subject>Physics</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>Precursors</subject><subject>Protoplanetary disks</subject><subject>Rarefied gases</subject><subject>Resonance</subject><subject>shock waves</subject><subject>Solar system</subject><subject>Spheroids</subject><subject>Sweeping</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwVPgnVJ86sBL2NsThkITsFbSNPUdXRNTdrJ_ntTKvPk5T3el8_7vscXgGsE73FK-ARRnMYEUz5RGTYcnoDRUToFIwghiRnmH-fgwvttPyZCjMDDbGPr3HWViRbW7VRb2jrKDlG7MdGz3ZeqjtbfxjRl_Rmtje4q5aJX422tam0uwVmhKm-ufvsYvC_mb7NlvHp5fJpNV7EmFLahMsRUSjCDNBxFOqOpFlRAzFWW0SQTjLGECy1UkWQ5UjnhglIGscm1Khgeg9vBd6Mq2bhyp9xBWlXK5XQlew0mmAmGkj0K7M3ANs5-dca3cms7V4f3ZIAo5wwSEig4UNpZ750pjrYIyj5P2Ycn-_DkkGdYuRtWStv8ef6L_wCwAHQE</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Gong, Munan</creator><creator>Zheng, Xiaochen</creator><creator>Lin, Douglas N. C.</creator><creator>Silsbee, Kedron</creator><creator>Baruteau, Clement</creator><creator>Mao, Shude</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1613-6263</orcidid><orcidid>https://orcid.org/0000-0003-1572-0505</orcidid><orcidid>https://orcid.org/0000-0002-7814-9185</orcidid><orcidid>https://orcid.org/0000-0001-8317-2788</orcidid><orcidid>https://orcid.org/0000-0002-2672-3456</orcidid></search><sort><creationdate>20191001</creationdate><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><author>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Calcium</topic><topic>Chondrule</topic><topic>Computer simulation</topic><topic>Depletion</topic><topic>Earth and Planetary Astrophysics</topic><topic>Eccentricity</topic><topic>Heating</topic><topic>Inclusions</topic><topic>Jupiter</topic><topic>Mathematical models</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>minor planets, asteroids: general</topic><topic>Numerical simulations</topic><topic>Orbital mechanics</topic><topic>Physics</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>Precursors</topic><topic>Protoplanetary disks</topic><topic>Rarefied gases</topic><topic>Resonance</topic><topic>shock waves</topic><topic>Solar system</topic><topic>Spheroids</topic><topic>Sweeping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Munan</creatorcontrib><creatorcontrib>Zheng, Xiaochen</creatorcontrib><creatorcontrib>Lin, Douglas N. C.</creatorcontrib><creatorcontrib>Silsbee, Kedron</creatorcontrib><creatorcontrib>Baruteau, Clement</creatorcontrib><creatorcontrib>Mao, Shude</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Munan</au><au>Zheng, Xiaochen</au><au>Lin, Douglas N. C.</au><au>Silsbee, Kedron</au><au>Baruteau, Clement</au><au>Mao, Shude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrule Formation by the Jovian Sweeping Secular Resonance</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>883</volume><issue>2</issue><spage>164</spage><pages>164-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab3e70</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1613-6263</orcidid><orcidid>https://orcid.org/0000-0003-1572-0505</orcidid><orcidid>https://orcid.org/0000-0002-7814-9185</orcidid><orcidid>https://orcid.org/0000-0001-8317-2788</orcidid><orcidid>https://orcid.org/0000-0002-2672-3456</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-10, Vol.883 (2), p.164 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02369612v1 |
source | IOP Publishing Free Content |
subjects | Aluminum Asteroids Astrophysics Calcium Chondrule Computer simulation Depletion Earth and Planetary Astrophysics Eccentricity Heating Inclusions Jupiter Mathematical models Meteorites meteorites, meteors, meteoroids minor planets, asteroids: general Numerical simulations Orbital mechanics Physics Planet formation Planetary evolution Precursors Protoplanetary disks Rarefied gases Resonance shock waves Solar system Spheroids Sweeping |
title | Chondrule Formation by the Jovian Sweeping Secular Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrule%20Formation%20by%20the%20Jovian%20Sweeping%20Secular%20Resonance&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gong,%20Munan&rft.date=2019-10-01&rft.volume=883&rft.issue=2&rft.spage=164&rft.pages=164-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab3e70&rft_dat=%3Cproquest_O3W%3E2365776044%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365776044&rft_id=info:pmid/&rfr_iscdi=true |