Chondrule Formation by the Jovian Sweeping Secular Resonance

Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-10, Vol.883 (2), p.164
Hauptverfasser: Gong, Munan, Zheng, Xiaochen, Lin, Douglas N. C., Silsbee, Kedron, Baruteau, Clement, Mao, Shude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 164
container_title The Astrophysical journal
container_volume 883
creator Gong, Munan
Zheng, Xiaochen
Lin, Douglas N. C.
Silsbee, Kedron
Baruteau, Clement
Mao, Shude
description Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.
doi_str_mv 10.3847/1538-4357/ab3e70
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02369612v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365776044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwVPgnVJ86sBL2NsThkITsFbSNPUdXRNTdrJ_ntTKvPk5T3el8_7vscXgGsE73FK-ARRnMYEUz5RGTYcnoDRUToFIwghiRnmH-fgwvttPyZCjMDDbGPr3HWViRbW7VRb2jrKDlG7MdGz3ZeqjtbfxjRl_Rmtje4q5aJX422tam0uwVmhKm-ufvsYvC_mb7NlvHp5fJpNV7EmFLahMsRUSjCDNBxFOqOpFlRAzFWW0SQTjLGECy1UkWQ5UjnhglIGscm1Khgeg9vBd6Mq2bhyp9xBWlXK5XQlew0mmAmGkj0K7M3ANs5-dca3cms7V4f3ZIAo5wwSEig4UNpZ750pjrYIyj5P2Ycn-_DkkGdYuRtWStv8ef6L_wCwAHQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365776044</pqid></control><display><type>article</type><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><source>IOP Publishing Free Content</source><creator>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</creator><creatorcontrib>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</creatorcontrib><description>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab3e70</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aluminum ; Asteroids ; Astrophysics ; Calcium ; Chondrule ; Computer simulation ; Depletion ; Earth and Planetary Astrophysics ; Eccentricity ; Heating ; Inclusions ; Jupiter ; Mathematical models ; Meteorites ; meteorites, meteors, meteoroids ; minor planets, asteroids: general ; Numerical simulations ; Orbital mechanics ; Physics ; Planet formation ; Planetary evolution ; Precursors ; Protoplanetary disks ; Rarefied gases ; Resonance ; shock waves ; Solar system ; Spheroids ; Sweeping</subject><ispartof>The Astrophysical journal, 2019-10, Vol.883 (2), p.164</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 01, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</citedby><cites>FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</cites><orcidid>0000-0003-1613-6263 ; 0000-0003-1572-0505 ; 0000-0002-7814-9185 ; 0000-0001-8317-2788 ; 0000-0002-2672-3456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab3e70/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab3e70$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-02369612$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Munan</creatorcontrib><creatorcontrib>Zheng, Xiaochen</creatorcontrib><creatorcontrib>Lin, Douglas N. C.</creatorcontrib><creatorcontrib>Silsbee, Kedron</creatorcontrib><creatorcontrib>Baruteau, Clement</creatorcontrib><creatorcontrib>Mao, Shude</creatorcontrib><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</description><subject>Aluminum</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Calcium</subject><subject>Chondrule</subject><subject>Computer simulation</subject><subject>Depletion</subject><subject>Earth and Planetary Astrophysics</subject><subject>Eccentricity</subject><subject>Heating</subject><subject>Inclusions</subject><subject>Jupiter</subject><subject>Mathematical models</subject><subject>Meteorites</subject><subject>meteorites, meteors, meteoroids</subject><subject>minor planets, asteroids: general</subject><subject>Numerical simulations</subject><subject>Orbital mechanics</subject><subject>Physics</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>Precursors</subject><subject>Protoplanetary disks</subject><subject>Rarefied gases</subject><subject>Resonance</subject><subject>shock waves</subject><subject>Solar system</subject><subject>Spheroids</subject><subject>Sweeping</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwVPgnVJ86sBL2NsThkITsFbSNPUdXRNTdrJ_ntTKvPk5T3el8_7vscXgGsE73FK-ARRnMYEUz5RGTYcnoDRUToFIwghiRnmH-fgwvttPyZCjMDDbGPr3HWViRbW7VRb2jrKDlG7MdGz3ZeqjtbfxjRl_Rmtje4q5aJX422tam0uwVmhKm-ufvsYvC_mb7NlvHp5fJpNV7EmFLahMsRUSjCDNBxFOqOpFlRAzFWW0SQTjLGECy1UkWQ5UjnhglIGscm1Khgeg9vBd6Mq2bhyp9xBWlXK5XQlew0mmAmGkj0K7M3ANs5-dca3cms7V4f3ZIAo5wwSEig4UNpZ750pjrYIyj5P2Ycn-_DkkGdYuRtWStv8ef6L_wCwAHQE</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Gong, Munan</creator><creator>Zheng, Xiaochen</creator><creator>Lin, Douglas N. C.</creator><creator>Silsbee, Kedron</creator><creator>Baruteau, Clement</creator><creator>Mao, Shude</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1613-6263</orcidid><orcidid>https://orcid.org/0000-0003-1572-0505</orcidid><orcidid>https://orcid.org/0000-0002-7814-9185</orcidid><orcidid>https://orcid.org/0000-0001-8317-2788</orcidid><orcidid>https://orcid.org/0000-0002-2672-3456</orcidid></search><sort><creationdate>20191001</creationdate><title>Chondrule Formation by the Jovian Sweeping Secular Resonance</title><author>Gong, Munan ; Zheng, Xiaochen ; Lin, Douglas N. C. ; Silsbee, Kedron ; Baruteau, Clement ; Mao, Shude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-c4616a8436052991cb58c959037abb52b9666279c9af2bd1ad47955603edcaf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Calcium</topic><topic>Chondrule</topic><topic>Computer simulation</topic><topic>Depletion</topic><topic>Earth and Planetary Astrophysics</topic><topic>Eccentricity</topic><topic>Heating</topic><topic>Inclusions</topic><topic>Jupiter</topic><topic>Mathematical models</topic><topic>Meteorites</topic><topic>meteorites, meteors, meteoroids</topic><topic>minor planets, asteroids: general</topic><topic>Numerical simulations</topic><topic>Orbital mechanics</topic><topic>Physics</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>Precursors</topic><topic>Protoplanetary disks</topic><topic>Rarefied gases</topic><topic>Resonance</topic><topic>shock waves</topic><topic>Solar system</topic><topic>Spheroids</topic><topic>Sweeping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Munan</creatorcontrib><creatorcontrib>Zheng, Xiaochen</creatorcontrib><creatorcontrib>Lin, Douglas N. C.</creatorcontrib><creatorcontrib>Silsbee, Kedron</creatorcontrib><creatorcontrib>Baruteau, Clement</creatorcontrib><creatorcontrib>Mao, Shude</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Munan</au><au>Zheng, Xiaochen</au><au>Lin, Douglas N. C.</au><au>Silsbee, Kedron</au><au>Baruteau, Clement</au><au>Mao, Shude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrule Formation by the Jovian Sweeping Secular Resonance</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>883</volume><issue>2</issue><spage>164</spage><pages>164-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Chondrules are silicate spheroids found in meteorites, and they serve as important fossil records of the early solar system. In order to form chondrules, chondrule precursors must be heated to temperatures much higher than the typical conditions in the current asteroid belt. One proposed mechanism for chondrule heating is the passage through bow shocks of highly eccentric planetesimals in the protoplanetary disk in the early solar system. However, it is difficult for planetesimals to gain and maintain such high eccentricities. In this paper, we present a new scenario in which planetesimals in the asteroid belt region are excited to high eccentricities by the Jovian sweeping secular resonance in a depleting disk, leading to efficient formation of chondrules. We study the orbital evolution of planetesimals in the disk using semi-analytic models and numerical simulations. We investigate the dependence of eccentricity excitation on the planetesimal's size, as well as the physical environment and the probability for chondrule formation. We find that 50-2000 km planetesimals can obtain eccentricities larger than 0.6 and cause effective chondrule heating. Most chondrules form in high-velocity shocks, in low-density gas, and in the inner disk. The fraction of chondrule precursors that become chondrules is about 4%-9% between 1.5 and 3 au. Our model implies that the disk depletion timescale is τdep 1 Myr, comparable to the age spread of chondrules, and that Jupiter formed before chondrules, no more than 0.7 Myr after the formation of calcium aluminum inclusions.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab3e70</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1613-6263</orcidid><orcidid>https://orcid.org/0000-0003-1572-0505</orcidid><orcidid>https://orcid.org/0000-0002-7814-9185</orcidid><orcidid>https://orcid.org/0000-0001-8317-2788</orcidid><orcidid>https://orcid.org/0000-0002-2672-3456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-10, Vol.883 (2), p.164
issn 0004-637X
1538-4357
language eng
recordid cdi_hal_primary_oai_HAL_hal_02369612v1
source IOP Publishing Free Content
subjects Aluminum
Asteroids
Astrophysics
Calcium
Chondrule
Computer simulation
Depletion
Earth and Planetary Astrophysics
Eccentricity
Heating
Inclusions
Jupiter
Mathematical models
Meteorites
meteorites, meteors, meteoroids
minor planets, asteroids: general
Numerical simulations
Orbital mechanics
Physics
Planet formation
Planetary evolution
Precursors
Protoplanetary disks
Rarefied gases
Resonance
shock waves
Solar system
Spheroids
Sweeping
title Chondrule Formation by the Jovian Sweeping Secular Resonance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrule%20Formation%20by%20the%20Jovian%20Sweeping%20Secular%20Resonance&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gong,%20Munan&rft.date=2019-10-01&rft.volume=883&rft.issue=2&rft.spage=164&rft.pages=164-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab3e70&rft_dat=%3Cproquest_O3W%3E2365776044%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365776044&rft_id=info:pmid/&rfr_iscdi=true