Transcriptional Control of Adrenal Steroidogenesis

In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-09, Vol.286 (38), p.32976-32985
Hauptverfasser: Lefrancois-Martinez, Anne-Marie, Blondet-Trichard, Antonine, Binart, Nadine, Val, Pierre, Chambon, Céline, Sahut-Barnola, Isabelle, Pointud, Jean-Christophe, Martinez, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32985
container_issue 38
container_start_page 32976
container_title The Journal of biological chemistry
container_volume 286
creator Lefrancois-Martinez, Anne-Marie
Blondet-Trichard, Antonine
Binart, Nadine
Val, Pierre
Chambon, Céline
Sahut-Barnola, Isabelle
Pointud, Jean-Christophe
Martinez, Antoine
description In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr−/−) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures. We demonstrate that lack of Prlr does not affect basal (nor stress-induced) corticosterone levels in mice. PRL triggers JAK2/STAT5-dependent transcription in adrenal cells, but this does not influence corticosterone release. In contrast, pharmacological or siRNA-mediated inhibition of JAK2 reveals its essential role in both basal and ACTH/cAMP-induced steroidogenesis. We demonstrate that nuclear JAK2 regulates the amount of active transcription factor CREB (cAMP response element-binding protein) through tyrosine phosphorylation and prevention of proteasomal degradation, which in turn leads to transcriptional activation of the rate-limiting steroidogenic Star gene. Hence, we describe a novel link between PKA and JAK2 by which nuclear JAK2 signaling controls adrenal steroidogenesis by increasing the stability of CREB.
doi_str_mv 10.1074/jbc.M111.218016
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02366470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820781925</els_id><sourcerecordid>S0021925820781925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2776-f0f8f13a79ed437420d56a3c14ec84a8442c0648a411a70b83ed8e0eb5d95ca83</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnr7t66PZekrbpcRR1wsSDE7yFLHnVjNqMpAz8722pePNdHvz4fQ_ex9gtwhKhlKvD3i6fEXHJUQEWZ2yGoEQmcnw_ZzMAjlnFc3XJrlI6wDCywhnju2i6ZKM_9j50pl3UoetjaBehWaxdpDF67SkG78IHdZR8umYXjWkT3fzuOXt7uN_Vm2z78vhUr7eZ5WVZZA00qkFhyoqcFKXk4PLCCIuSrJJGScktFFIZiWhK2CtBThHQPndVbo0Sc3Y33f00rT5G_2Xitw7G6816q8cMuCgKWcIJh-5q6toYUorU_AEIetSjBz161KMnPQNRTQQNL5w8RZ2sp86S85Fsr13w_7I__NtqiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transcriptional Control of Adrenal Steroidogenesis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lefrancois-Martinez, Anne-Marie ; Blondet-Trichard, Antonine ; Binart, Nadine ; Val, Pierre ; Chambon, Céline ; Sahut-Barnola, Isabelle ; Pointud, Jean-Christophe ; Martinez, Antoine</creator><creatorcontrib>Lefrancois-Martinez, Anne-Marie ; Blondet-Trichard, Antonine ; Binart, Nadine ; Val, Pierre ; Chambon, Céline ; Sahut-Barnola, Isabelle ; Pointud, Jean-Christophe ; Martinez, Antoine</creatorcontrib><description>In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr−/−) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures. We demonstrate that lack of Prlr does not affect basal (nor stress-induced) corticosterone levels in mice. PRL triggers JAK2/STAT5-dependent transcription in adrenal cells, but this does not influence corticosterone release. In contrast, pharmacological or siRNA-mediated inhibition of JAK2 reveals its essential role in both basal and ACTH/cAMP-induced steroidogenesis. We demonstrate that nuclear JAK2 regulates the amount of active transcription factor CREB (cAMP response element-binding protein) through tyrosine phosphorylation and prevention of proteasomal degradation, which in turn leads to transcriptional activation of the rate-limiting steroidogenic Star gene. Hence, we describe a novel link between PKA and JAK2 by which nuclear JAK2 signaling controls adrenal steroidogenesis by increasing the stability of CREB.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.218016</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ACTH ; Adrenal Gland ; Cellular Biology ; CREB ; Gene Transcription ; Hormone Receptors ; JAK Kinase ; Life Sciences ; Prolactin ; Protein Kinase A (PKA) ; STAT Transcription Factor ; Steroid Hormone ; Subcellular Processes</subject><ispartof>The Journal of biological chemistry, 2011-09, Vol.286 (38), p.32976-32985</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2776-f0f8f13a79ed437420d56a3c14ec84a8442c0648a411a70b83ed8e0eb5d95ca83</citedby><cites>FETCH-LOGICAL-c2776-f0f8f13a79ed437420d56a3c14ec84a8442c0648a411a70b83ed8e0eb5d95ca83</cites><orcidid>0000-0001-7648-5567 ; 0000-0001-9304-5061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02366470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefrancois-Martinez, Anne-Marie</creatorcontrib><creatorcontrib>Blondet-Trichard, Antonine</creatorcontrib><creatorcontrib>Binart, Nadine</creatorcontrib><creatorcontrib>Val, Pierre</creatorcontrib><creatorcontrib>Chambon, Céline</creatorcontrib><creatorcontrib>Sahut-Barnola, Isabelle</creatorcontrib><creatorcontrib>Pointud, Jean-Christophe</creatorcontrib><creatorcontrib>Martinez, Antoine</creatorcontrib><title>Transcriptional Control of Adrenal Steroidogenesis</title><title>The Journal of biological chemistry</title><description>In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr−/−) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures. We demonstrate that lack of Prlr does not affect basal (nor stress-induced) corticosterone levels in mice. PRL triggers JAK2/STAT5-dependent transcription in adrenal cells, but this does not influence corticosterone release. In contrast, pharmacological or siRNA-mediated inhibition of JAK2 reveals its essential role in both basal and ACTH/cAMP-induced steroidogenesis. We demonstrate that nuclear JAK2 regulates the amount of active transcription factor CREB (cAMP response element-binding protein) through tyrosine phosphorylation and prevention of proteasomal degradation, which in turn leads to transcriptional activation of the rate-limiting steroidogenic Star gene. Hence, we describe a novel link between PKA and JAK2 by which nuclear JAK2 signaling controls adrenal steroidogenesis by increasing the stability of CREB.</description><subject>ACTH</subject><subject>Adrenal Gland</subject><subject>Cellular Biology</subject><subject>CREB</subject><subject>Gene Transcription</subject><subject>Hormone Receptors</subject><subject>JAK Kinase</subject><subject>Life Sciences</subject><subject>Prolactin</subject><subject>Protein Kinase A (PKA)</subject><subject>STAT Transcription Factor</subject><subject>Steroid Hormone</subject><subject>Subcellular Processes</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKdnr7t66PZekrbpcRR1wsSDE7yFLHnVjNqMpAz8722pePNdHvz4fQ_ex9gtwhKhlKvD3i6fEXHJUQEWZ2yGoEQmcnw_ZzMAjlnFc3XJrlI6wDCywhnju2i6ZKM_9j50pl3UoetjaBehWaxdpDF67SkG78IHdZR8umYXjWkT3fzuOXt7uN_Vm2z78vhUr7eZ5WVZZA00qkFhyoqcFKXk4PLCCIuSrJJGScktFFIZiWhK2CtBThHQPndVbo0Sc3Y33f00rT5G_2Xitw7G6816q8cMuCgKWcIJh-5q6toYUorU_AEIetSjBz161KMnPQNRTQQNL5w8RZ2sp86S85Fsr13w_7I__NtqiQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Lefrancois-Martinez, Anne-Marie</creator><creator>Blondet-Trichard, Antonine</creator><creator>Binart, Nadine</creator><creator>Val, Pierre</creator><creator>Chambon, Céline</creator><creator>Sahut-Barnola, Isabelle</creator><creator>Pointud, Jean-Christophe</creator><creator>Martinez, Antoine</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7648-5567</orcidid><orcidid>https://orcid.org/0000-0001-9304-5061</orcidid></search><sort><creationdate>201109</creationdate><title>Transcriptional Control of Adrenal Steroidogenesis</title><author>Lefrancois-Martinez, Anne-Marie ; Blondet-Trichard, Antonine ; Binart, Nadine ; Val, Pierre ; Chambon, Céline ; Sahut-Barnola, Isabelle ; Pointud, Jean-Christophe ; Martinez, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2776-f0f8f13a79ed437420d56a3c14ec84a8442c0648a411a70b83ed8e0eb5d95ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACTH</topic><topic>Adrenal Gland</topic><topic>Cellular Biology</topic><topic>CREB</topic><topic>Gene Transcription</topic><topic>Hormone Receptors</topic><topic>JAK Kinase</topic><topic>Life Sciences</topic><topic>Prolactin</topic><topic>Protein Kinase A (PKA)</topic><topic>STAT Transcription Factor</topic><topic>Steroid Hormone</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefrancois-Martinez, Anne-Marie</creatorcontrib><creatorcontrib>Blondet-Trichard, Antonine</creatorcontrib><creatorcontrib>Binart, Nadine</creatorcontrib><creatorcontrib>Val, Pierre</creatorcontrib><creatorcontrib>Chambon, Céline</creatorcontrib><creatorcontrib>Sahut-Barnola, Isabelle</creatorcontrib><creatorcontrib>Pointud, Jean-Christophe</creatorcontrib><creatorcontrib>Martinez, Antoine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefrancois-Martinez, Anne-Marie</au><au>Blondet-Trichard, Antonine</au><au>Binart, Nadine</au><au>Val, Pierre</au><au>Chambon, Céline</au><au>Sahut-Barnola, Isabelle</au><au>Pointud, Jean-Christophe</au><au>Martinez, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional Control of Adrenal Steroidogenesis</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2011-09</date><risdate>2011</risdate><volume>286</volume><issue>38</issue><spage>32976</spage><epage>32985</epage><pages>32976-32985</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr−/−) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures. We demonstrate that lack of Prlr does not affect basal (nor stress-induced) corticosterone levels in mice. PRL triggers JAK2/STAT5-dependent transcription in adrenal cells, but this does not influence corticosterone release. In contrast, pharmacological or siRNA-mediated inhibition of JAK2 reveals its essential role in both basal and ACTH/cAMP-induced steroidogenesis. We demonstrate that nuclear JAK2 regulates the amount of active transcription factor CREB (cAMP response element-binding protein) through tyrosine phosphorylation and prevention of proteasomal degradation, which in turn leads to transcriptional activation of the rate-limiting steroidogenic Star gene. Hence, we describe a novel link between PKA and JAK2 by which nuclear JAK2 signaling controls adrenal steroidogenesis by increasing the stability of CREB.</abstract><pub>Elsevier Inc</pub><doi>10.1074/jbc.M111.218016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7648-5567</orcidid><orcidid>https://orcid.org/0000-0001-9304-5061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-09, Vol.286 (38), p.32976-32985
issn 0021-9258
1083-351X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02366470v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects ACTH
Adrenal Gland
Cellular Biology
CREB
Gene Transcription
Hormone Receptors
JAK Kinase
Life Sciences
Prolactin
Protein Kinase A (PKA)
STAT Transcription Factor
Steroid Hormone
Subcellular Processes
title Transcriptional Control of Adrenal Steroidogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20Control%20of%20Adrenal%20Steroidogenesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lefrancois-Martinez,%20Anne-Marie&rft.date=2011-09&rft.volume=286&rft.issue=38&rft.spage=32976&rft.epage=32985&rft.pages=32976-32985&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.218016&rft_dat=%3Celsevier_hal_p%3ES0021925820781925%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021925820781925&rfr_iscdi=true