Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles

The experimental design of improved nanocatalysts is usually based on shape control and is surface-ligand dependent. First-principle calculations can guide their design, both in terms of activity and selectivity, provided that theoretical descriptors can be defined and used in a prescreening process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-11, Vol.7 (11), p.9823-9835
Hauptverfasser: del Rosal, Iker, Mercy, Maxime, Gerber, Iann C, Poteau, Romuald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9835
container_issue 11
container_start_page 9823
container_title ACS nano
container_volume 7
creator del Rosal, Iker
Mercy, Maxime
Gerber, Iann C
Poteau, Romuald
description The experimental design of improved nanocatalysts is usually based on shape control and is surface-ligand dependent. First-principle calculations can guide their design, both in terms of activity and selectivity, provided that theoretical descriptors can be defined and used in a prescreening process. As a consequence of the Sabatier principle and of the Brønsted–Evans–Polanyi relationship, an important prerequisite before optimizing the catalytic properties of nanoparticles is the knowledge of the selective adsorption strengths of reactants at their surface. We report here adsorption energies of X (H, CH3) and L (PH3, CO) ligands at the surface of bare ruthenium nanoclusters Ru n (n = 55 and 147) calculated at the DFT level. Their dependence on the topology of the adsorption sites as well as on the size and shape of the nanoparticles (NPs) is rationalized with local descriptors derived from the so-called d-band center model. Defining the descriptors involves the determination of the energy of effective d atomic orbitals for each surface atom. Such a ligand field theory-like model is in close relation with frontier molecular orbital theory, a cornerstone of rational chemical synthesis. The descriptors are depicted as color maps which straightforwardly yield possible reactivity spots. The adsorption map of a large spherical hcp cluster (Ru288) nicely confirms the remarkable activity of steps, the so-called B5 sites. The predictive character of this conceptual DFT approach should apply to other transition metal NPs and it could be a useful guide to the design of efficient nanocatalysts bearing sites with a specific activity.
doi_str_mv 10.1021/nn403364p
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02366322v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462185127</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-89e2e7ff6e2c27eb3d8f3ce5c41692963a18af6e79f2368dd5e0a8d69e925a053</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMofqwe_APSi6CHaj7aND2ui19QVGQF8RJiM3UjbVOTVth_b9Zd14vgaYZ5n3kZ5kXokOAzgik5b9sEM8aTbgPtkpzxGAv-vLnuU7KD9rx_xzjNRMa30Q5NsGAJF7vopTBvqtXxlYFaR9MZWDePL5QHHY1bVc-98ZGton4G0Vh767re2DZ6cLYD1xv4Fh-HILdmaKI71dpOBaGswe-jrUrVHg5WdYSeri6nk5u4uL--nYyLWCWC9bHIgUJWVRxoSTN4ZVpUrIS0TAjPac6ZIkIFNcsryrjQOgWshOY55DRVOGUjdLr0nalads40ys2lVUbejAu5mOGwxxmlnySwJ0u2c_ZjAN_LxvgS6lq1YAcvScYpTrHA-H804ZSE39Ls94LSWe8dVOszCJaLhOQ6ocAerWyH1wb0mvyJJADHS0CVXr7bwYUY_B9GX-8JlpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462185127</pqid></control><display><type>article</type><title>Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles</title><source>ACS Publications</source><creator>del Rosal, Iker ; Mercy, Maxime ; Gerber, Iann C ; Poteau, Romuald</creator><creatorcontrib>del Rosal, Iker ; Mercy, Maxime ; Gerber, Iann C ; Poteau, Romuald</creatorcontrib><description>The experimental design of improved nanocatalysts is usually based on shape control and is surface-ligand dependent. First-principle calculations can guide their design, both in terms of activity and selectivity, provided that theoretical descriptors can be defined and used in a prescreening process. As a consequence of the Sabatier principle and of the Brønsted–Evans–Polanyi relationship, an important prerequisite before optimizing the catalytic properties of nanoparticles is the knowledge of the selective adsorption strengths of reactants at their surface. We report here adsorption energies of X (H, CH3) and L (PH3, CO) ligands at the surface of bare ruthenium nanoclusters Ru n (n = 55 and 147) calculated at the DFT level. Their dependence on the topology of the adsorption sites as well as on the size and shape of the nanoparticles (NPs) is rationalized with local descriptors derived from the so-called d-band center model. Defining the descriptors involves the determination of the energy of effective d atomic orbitals for each surface atom. Such a ligand field theory-like model is in close relation with frontier molecular orbital theory, a cornerstone of rational chemical synthesis. The descriptors are depicted as color maps which straightforwardly yield possible reactivity spots. The adsorption map of a large spherical hcp cluster (Ru288) nicely confirms the remarkable activity of steps, the so-called B5 sites. The predictive character of this conceptual DFT approach should apply to other transition metal NPs and it could be a useful guide to the design of efficient nanocatalysts bearing sites with a specific activity.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn403364p</identifier><identifier>PMID: 24083468</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Chemical Sciences ; Design engineering ; Ligands ; Mathematical models ; Nanoparticles ; Nanostructure ; or physical chemistry ; Other ; Ruthenium ; Surface chemistry ; Synthesis (chemistry) ; Theoretical and</subject><ispartof>ACS nano, 2013-11, Vol.7 (11), p.9823-9835</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-89e2e7ff6e2c27eb3d8f3ce5c41692963a18af6e79f2368dd5e0a8d69e925a053</citedby><cites>FETCH-LOGICAL-a483t-89e2e7ff6e2c27eb3d8f3ce5c41692963a18af6e79f2368dd5e0a8d69e925a053</cites><orcidid>0000-0001-6898-4550 ; 0000-0001-5091-2655 ; 0000-0003-4338-174X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn403364p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn403364p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24083468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02366322$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>del Rosal, Iker</creatorcontrib><creatorcontrib>Mercy, Maxime</creatorcontrib><creatorcontrib>Gerber, Iann C</creatorcontrib><creatorcontrib>Poteau, Romuald</creatorcontrib><title>Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The experimental design of improved nanocatalysts is usually based on shape control and is surface-ligand dependent. First-principle calculations can guide their design, both in terms of activity and selectivity, provided that theoretical descriptors can be defined and used in a prescreening process. As a consequence of the Sabatier principle and of the Brønsted–Evans–Polanyi relationship, an important prerequisite before optimizing the catalytic properties of nanoparticles is the knowledge of the selective adsorption strengths of reactants at their surface. We report here adsorption energies of X (H, CH3) and L (PH3, CO) ligands at the surface of bare ruthenium nanoclusters Ru n (n = 55 and 147) calculated at the DFT level. Their dependence on the topology of the adsorption sites as well as on the size and shape of the nanoparticles (NPs) is rationalized with local descriptors derived from the so-called d-band center model. Defining the descriptors involves the determination of the energy of effective d atomic orbitals for each surface atom. Such a ligand field theory-like model is in close relation with frontier molecular orbital theory, a cornerstone of rational chemical synthesis. The descriptors are depicted as color maps which straightforwardly yield possible reactivity spots. The adsorption map of a large spherical hcp cluster (Ru288) nicely confirms the remarkable activity of steps, the so-called B5 sites. The predictive character of this conceptual DFT approach should apply to other transition metal NPs and it could be a useful guide to the design of efficient nanocatalysts bearing sites with a specific activity.</description><subject>Adsorption</subject><subject>Chemical Sciences</subject><subject>Design engineering</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>or physical chemistry</subject><subject>Other</subject><subject>Ruthenium</subject><subject>Surface chemistry</subject><subject>Synthesis (chemistry)</subject><subject>Theoretical and</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMofqwe_APSi6CHaj7aND2ui19QVGQF8RJiM3UjbVOTVth_b9Zd14vgaYZ5n3kZ5kXokOAzgik5b9sEM8aTbgPtkpzxGAv-vLnuU7KD9rx_xzjNRMa30Q5NsGAJF7vopTBvqtXxlYFaR9MZWDePL5QHHY1bVc-98ZGton4G0Vh767re2DZ6cLYD1xv4Fh-HILdmaKI71dpOBaGswe-jrUrVHg5WdYSeri6nk5u4uL--nYyLWCWC9bHIgUJWVRxoSTN4ZVpUrIS0TAjPac6ZIkIFNcsryrjQOgWshOY55DRVOGUjdLr0nalads40ys2lVUbejAu5mOGwxxmlnySwJ0u2c_ZjAN_LxvgS6lq1YAcvScYpTrHA-H804ZSE39Ls94LSWe8dVOszCJaLhOQ6ocAerWyH1wb0mvyJJADHS0CVXr7bwYUY_B9GX-8JlpU</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>del Rosal, Iker</creator><creator>Mercy, Maxime</creator><creator>Gerber, Iann C</creator><creator>Poteau, Romuald</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6898-4550</orcidid><orcidid>https://orcid.org/0000-0001-5091-2655</orcidid><orcidid>https://orcid.org/0000-0003-4338-174X</orcidid></search><sort><creationdate>20131126</creationdate><title>Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles</title><author>del Rosal, Iker ; Mercy, Maxime ; Gerber, Iann C ; Poteau, Romuald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-89e2e7ff6e2c27eb3d8f3ce5c41692963a18af6e79f2368dd5e0a8d69e925a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Chemical Sciences</topic><topic>Design engineering</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>or physical chemistry</topic><topic>Other</topic><topic>Ruthenium</topic><topic>Surface chemistry</topic><topic>Synthesis (chemistry)</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del Rosal, Iker</creatorcontrib><creatorcontrib>Mercy, Maxime</creatorcontrib><creatorcontrib>Gerber, Iann C</creatorcontrib><creatorcontrib>Poteau, Romuald</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Rosal, Iker</au><au>Mercy, Maxime</au><au>Gerber, Iann C</au><au>Poteau, Romuald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-11-26</date><risdate>2013</risdate><volume>7</volume><issue>11</issue><spage>9823</spage><epage>9835</epage><pages>9823-9835</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The experimental design of improved nanocatalysts is usually based on shape control and is surface-ligand dependent. First-principle calculations can guide their design, both in terms of activity and selectivity, provided that theoretical descriptors can be defined and used in a prescreening process. As a consequence of the Sabatier principle and of the Brønsted–Evans–Polanyi relationship, an important prerequisite before optimizing the catalytic properties of nanoparticles is the knowledge of the selective adsorption strengths of reactants at their surface. We report here adsorption energies of X (H, CH3) and L (PH3, CO) ligands at the surface of bare ruthenium nanoclusters Ru n (n = 55 and 147) calculated at the DFT level. Their dependence on the topology of the adsorption sites as well as on the size and shape of the nanoparticles (NPs) is rationalized with local descriptors derived from the so-called d-band center model. Defining the descriptors involves the determination of the energy of effective d atomic orbitals for each surface atom. Such a ligand field theory-like model is in close relation with frontier molecular orbital theory, a cornerstone of rational chemical synthesis. The descriptors are depicted as color maps which straightforwardly yield possible reactivity spots. The adsorption map of a large spherical hcp cluster (Ru288) nicely confirms the remarkable activity of steps, the so-called B5 sites. The predictive character of this conceptual DFT approach should apply to other transition metal NPs and it could be a useful guide to the design of efficient nanocatalysts bearing sites with a specific activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24083468</pmid><doi>10.1021/nn403364p</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6898-4550</orcidid><orcidid>https://orcid.org/0000-0001-5091-2655</orcidid><orcidid>https://orcid.org/0000-0003-4338-174X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-11, Vol.7 (11), p.9823-9835
issn 1936-0851
1936-086X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02366322v1
source ACS Publications
subjects Adsorption
Chemical Sciences
Design engineering
Ligands
Mathematical models
Nanoparticles
Nanostructure
or physical chemistry
Other
Ruthenium
Surface chemistry
Synthesis (chemistry)
Theoretical and
title Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Field%20Theory-Based%20Analysis%20of%20the%20Adsorption%20Properties%20of%20Ruthenium%20Nanoparticles&rft.jtitle=ACS%20nano&rft.au=del%20Rosal,%20Iker&rft.date=2013-11-26&rft.volume=7&rft.issue=11&rft.spage=9823&rft.epage=9835&rft.pages=9823-9835&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn403364p&rft_dat=%3Cproquest_hal_p%3E1462185127%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462185127&rft_id=info:pmid/24083468&rfr_iscdi=true