Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States
We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and i...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2019-08, Vol.20 (8), p.2767-2818 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2818 |
---|---|
container_issue | 8 |
container_start_page | 2767 |
container_title | Annales Henri Poincaré |
container_volume | 20 |
creator | Després, Bruno |
description | We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example. |
doi_str_mv | 10.1007/s00023-019-00818-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02366278v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254571354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIQOEHOFnixCGwtvNojjzKQ4rEgcfVWpx1m6q1i-0Ula8nJQhuXHZXuzOj1UySnHA45wDlRQAAIVPgVQow5uN0s5Mc8ExkKRQF3_2dZbmfHIYwB-BiLKuDxD5pjJF8a6fsKfpOx84TQ9uwui_YsRtcrrZH4zyrW0vo209q2OsCg1uzyXuHsXU2sI82ztiDnbmlm5Il1wV25Rbxc4nWtmh7cYwUjpI9g4tAxz99lLzcTp6v79P68e7h-rJOtazKmArdQC7IlFUujCbQxOFNVxLKIhcoNHJj8qqhxjSSY4YZIQneGN68ZVJXJEfJ2aA7w4Va-XaJfqMctur-slbbXe9WUYhyvOY99nTArrx77yhENXedt_17Sog8y0su86xHiQGlvQvBk_mV5aC2GaghA9VnoL4zUJueJAdSWG0dJv8n_Q_rC8kFjGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254571354</pqid></control><display><type>article</type><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><source>Springer Nature - Complete Springer Journals</source><creator>Després, Bruno</creator><creatorcontrib>Després, Bruno</creatorcontrib><description>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00818-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Landau damping ; Linearization ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Numerical Analysis ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scattering ; Theoretical ; Trapped particles ; Vlasov equations</subject><ispartof>Annales Henri Poincaré, 2019-08, Vol.20 (8), p.2767-2818</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</citedby><cites>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</cites><orcidid>0000-0002-5954-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-019-00818-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-019-00818-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02366278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Després, Bruno</creatorcontrib><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</description><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Landau damping</subject><subject>Linearization</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scattering</subject><subject>Theoretical</subject><subject>Trapped particles</subject><subject>Vlasov equations</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIQOEHOFnixCGwtvNojjzKQ4rEgcfVWpx1m6q1i-0Ula8nJQhuXHZXuzOj1UySnHA45wDlRQAAIVPgVQow5uN0s5Mc8ExkKRQF3_2dZbmfHIYwB-BiLKuDxD5pjJF8a6fsKfpOx84TQ9uwui_YsRtcrrZH4zyrW0vo209q2OsCg1uzyXuHsXU2sI82ztiDnbmlm5Il1wV25Rbxc4nWtmh7cYwUjpI9g4tAxz99lLzcTp6v79P68e7h-rJOtazKmArdQC7IlFUujCbQxOFNVxLKIhcoNHJj8qqhxjSSY4YZIQneGN68ZVJXJEfJ2aA7w4Va-XaJfqMctur-slbbXe9WUYhyvOY99nTArrx77yhENXedt_17Sog8y0su86xHiQGlvQvBk_mV5aC2GaghA9VnoL4zUJueJAdSWG0dJv8n_Q_rC8kFjGw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Després, Bruno</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5954-9407</orcidid></search><sort><creationdate>20190801</creationdate><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><author>Després, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Landau damping</topic><topic>Linearization</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scattering</topic><topic>Theoretical</topic><topic>Trapped particles</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Després, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Després, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>20</volume><issue>8</issue><spage>2767</spage><epage>2818</epage><pages>2767-2818</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-019-00818-y</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-5954-9407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2019-08, Vol.20 (8), p.2767-2818 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02366278v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical and Quantum Gravitation Dynamical Systems and Ergodic Theory Elementary Particles Landau damping Linearization Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Numerical Analysis Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Scattering Theoretical Trapped particles Vlasov equations |
title | Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Structure%20and%20Landau%20Damping%20for%20Linearized%20Vlasov%20Equations%20with%20Inhomogeneous%20Boltzmannian%20States&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Despr%C3%A9s,%20Bruno&rft.date=2019-08-01&rft.volume=20&rft.issue=8&rft.spage=2767&rft.epage=2818&rft.pages=2767-2818&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00818-y&rft_dat=%3Cproquest_hal_p%3E2254571354%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254571354&rft_id=info:pmid/&rfr_iscdi=true |