Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States

We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2019-08, Vol.20 (8), p.2767-2818
1. Verfasser: Després, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2818
container_issue 8
container_start_page 2767
container_title Annales Henri Poincaré
container_volume 20
creator Després, Bruno
description We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.
doi_str_mv 10.1007/s00023-019-00818-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02366278v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254571354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIQOEHOFnixCGwtvNojjzKQ4rEgcfVWpx1m6q1i-0Ula8nJQhuXHZXuzOj1UySnHA45wDlRQAAIVPgVQow5uN0s5Mc8ExkKRQF3_2dZbmfHIYwB-BiLKuDxD5pjJF8a6fsKfpOx84TQ9uwui_YsRtcrrZH4zyrW0vo209q2OsCg1uzyXuHsXU2sI82ztiDnbmlm5Il1wV25Rbxc4nWtmh7cYwUjpI9g4tAxz99lLzcTp6v79P68e7h-rJOtazKmArdQC7IlFUujCbQxOFNVxLKIhcoNHJj8qqhxjSSY4YZIQneGN68ZVJXJEfJ2aA7w4Va-XaJfqMctur-slbbXe9WUYhyvOY99nTArrx77yhENXedt_17Sog8y0su86xHiQGlvQvBk_mV5aC2GaghA9VnoL4zUJueJAdSWG0dJv8n_Q_rC8kFjGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254571354</pqid></control><display><type>article</type><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><source>Springer Nature - Complete Springer Journals</source><creator>Després, Bruno</creator><creatorcontrib>Després, Bruno</creatorcontrib><description>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00818-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Landau damping ; Linearization ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Numerical Analysis ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scattering ; Theoretical ; Trapped particles ; Vlasov equations</subject><ispartof>Annales Henri Poincaré, 2019-08, Vol.20 (8), p.2767-2818</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</citedby><cites>FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</cites><orcidid>0000-0002-5954-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-019-00818-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-019-00818-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02366278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Després, Bruno</creatorcontrib><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</description><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Landau damping</subject><subject>Linearization</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scattering</subject><subject>Theoretical</subject><subject>Trapped particles</subject><subject>Vlasov equations</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIQOEHOFnixCGwtvNojjzKQ4rEgcfVWpx1m6q1i-0Ula8nJQhuXHZXuzOj1UySnHA45wDlRQAAIVPgVQow5uN0s5Mc8ExkKRQF3_2dZbmfHIYwB-BiLKuDxD5pjJF8a6fsKfpOx84TQ9uwui_YsRtcrrZH4zyrW0vo209q2OsCg1uzyXuHsXU2sI82ztiDnbmlm5Il1wV25Rbxc4nWtmh7cYwUjpI9g4tAxz99lLzcTp6v79P68e7h-rJOtazKmArdQC7IlFUujCbQxOFNVxLKIhcoNHJj8qqhxjSSY4YZIQneGN68ZVJXJEfJ2aA7w4Va-XaJfqMctur-slbbXe9WUYhyvOY99nTArrx77yhENXedt_17Sog8y0su86xHiQGlvQvBk_mV5aC2GaghA9VnoL4zUJueJAdSWG0dJv8n_Q_rC8kFjGw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Després, Bruno</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5954-9407</orcidid></search><sort><creationdate>20190801</creationdate><title>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</title><author>Després, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-2cd052ef7952fce0ce10bc9307652a2ca1ff59dedfd31a4a4eae21df1db43c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Landau damping</topic><topic>Linearization</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scattering</topic><topic>Theoretical</topic><topic>Trapped particles</topic><topic>Vlasov equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Després, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Després, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>20</volume><issue>8</issue><spage>2767</spage><epage>2818</epage><pages>2767-2818</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We study the linearized Vlasov–Poisson–Ampère equation for non-constant Boltzmannian states with one region of trapped particles in dimension one and construct the eigenstructure in the context of the scattering theory. This is based on the use of semi-discrete variables (moments in velocity), and it leads to a new Lippmann–Schwinger variational equation. The continuity in quadratic norm of the operator is proved, and the well posedness is proved for a small value of the scaling parameter. It gives a proof of Linear Landau damping for inhomogeneous Boltzmannian states. The linear HMF model is an example.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-019-00818-y</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-5954-9407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2019-08, Vol.20 (8), p.2767-2818
issn 1424-0637
1424-0661
language eng
recordid cdi_hal_primary_oai_HAL_hal_02366278v1
source Springer Nature - Complete Springer Journals
subjects Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Elementary Particles
Landau damping
Linearization
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Numerical Analysis
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Scattering
Theoretical
Trapped particles
Vlasov equations
title Scattering Structure and Landau Damping for Linearized Vlasov Equations with Inhomogeneous Boltzmannian States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Structure%20and%20Landau%20Damping%20for%20Linearized%20Vlasov%20Equations%20with%20Inhomogeneous%20Boltzmannian%20States&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Despr%C3%A9s,%20Bruno&rft.date=2019-08-01&rft.volume=20&rft.issue=8&rft.spage=2767&rft.epage=2818&rft.pages=2767-2818&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00818-y&rft_dat=%3Cproquest_hal_p%3E2254571354%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254571354&rft_id=info:pmid/&rfr_iscdi=true