A lightweight and multilingual framework for crisis information extraction from Twitter data
Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social n...
Gespeichert in:
Veröffentlicht in: | Social network analysis and mining 2019-12, Vol.9 (1), p.65, Article 65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Social network analysis and mining |
container_volume | 9 |
creator | Interdonato, Roberto Guillaume, Jean-Loup Doucet, Antoine |
description | Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed
lightweight crisis management framework
integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach. |
doi_str_mv | 10.1007/s13278-019-0608-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02364502v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920272752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWLQ_wF3AlYvRm2QeybIUtULBTd0JIZ1k2tR51CRj9d-bcaSu3Nx7E75zOByErgjcEoDizhNGC54AEQnkwJP0BE0Iz0WSpbk4Pd4ZnKOp9zsAIMCYgHyCXme4tpttOJhhYtVq3PR1sLVtN72qceVUYw6de8NV53DprLce2zY-GhVs12LzGZwqf87KdQ1eHWwIxmGtgrpEZ5WqvZn-7gv08nC_mi-S5fPj03y2TEomeEhSsTZapHmpFKliLENTUbJM8YxroKkptE5ZFeMTXlSQccq1NrTkhun1OsLsAt2MvltVy72zjXJfslNWLmZLOfwBZXnU0w8S2euR3bvuvTc-yF3XuzbGk1RQoAUtMhopMlKl67x3pjraEpBD53LsXMbO5dC5HFLQUeMj226M-3P-X_QNbdmERA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920272752</pqid></control><display><type>article</type><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</creator><creatorcontrib>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</creatorcontrib><description>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed
lightweight crisis management framework
integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-019-0608-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Clustering ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Document and Text Processing ; Earthquakes ; Economics ; Extraction ; Flexibility ; Game Theory ; Humanitarianism ; Humanities ; Information retrieval ; Language ; Law ; Lightweight ; Management of crises ; Methodology of the Social Sciences ; Natural disasters ; Natural language processing ; Original Article ; Semantics ; Slang ; Social and Behav. Sciences ; Social networks ; Statistical analysis ; Statistics for Social Sciences ; User behavior</subject><ispartof>Social network analysis and mining, 2019-12, Vol.9 (1), p.65, Article 65</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</citedby><cites>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</cites><orcidid>0000-0002-0536-6277 ; 0000-0001-6160-3356 ; 0000-0002-4615-1563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13278-019-0608-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920272752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,778,782,883,21375,21376,21377,21378,23243,27911,27912,33517,33690,33731,33992,34301,41475,42544,43646,43774,43792,43940,44054,51306,64370,64374,72224</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02364502$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Interdonato, Roberto</creatorcontrib><creatorcontrib>Guillaume, Jean-Loup</creatorcontrib><creatorcontrib>Doucet, Antoine</creatorcontrib><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed
lightweight crisis management framework
integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Document and Text Processing</subject><subject>Earthquakes</subject><subject>Economics</subject><subject>Extraction</subject><subject>Flexibility</subject><subject>Game Theory</subject><subject>Humanitarianism</subject><subject>Humanities</subject><subject>Information retrieval</subject><subject>Language</subject><subject>Law</subject><subject>Lightweight</subject><subject>Management of crises</subject><subject>Methodology of the Social Sciences</subject><subject>Natural disasters</subject><subject>Natural language processing</subject><subject>Original Article</subject><subject>Semantics</subject><subject>Slang</subject><subject>Social and Behav. Sciences</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Statistics for Social Sciences</subject><subject>User behavior</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWLQ_wF3AlYvRm2QeybIUtULBTd0JIZ1k2tR51CRj9d-bcaSu3Nx7E75zOByErgjcEoDizhNGC54AEQnkwJP0BE0Iz0WSpbk4Pd4ZnKOp9zsAIMCYgHyCXme4tpttOJhhYtVq3PR1sLVtN72qceVUYw6de8NV53DprLce2zY-GhVs12LzGZwqf87KdQ1eHWwIxmGtgrpEZ5WqvZn-7gv08nC_mi-S5fPj03y2TEomeEhSsTZapHmpFKliLENTUbJM8YxroKkptE5ZFeMTXlSQccq1NrTkhun1OsLsAt2MvltVy72zjXJfslNWLmZLOfwBZXnU0w8S2euR3bvuvTc-yF3XuzbGk1RQoAUtMhopMlKl67x3pjraEpBD53LsXMbO5dC5HFLQUeMj226M-3P-X_QNbdmERA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Interdonato, Roberto</creator><creator>Guillaume, Jean-Loup</creator><creator>Doucet, Antoine</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0536-6277</orcidid><orcidid>https://orcid.org/0000-0001-6160-3356</orcidid><orcidid>https://orcid.org/0000-0002-4615-1563</orcidid></search><sort><creationdate>20191201</creationdate><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><author>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Document and Text Processing</topic><topic>Earthquakes</topic><topic>Economics</topic><topic>Extraction</topic><topic>Flexibility</topic><topic>Game Theory</topic><topic>Humanitarianism</topic><topic>Humanities</topic><topic>Information retrieval</topic><topic>Language</topic><topic>Law</topic><topic>Lightweight</topic><topic>Management of crises</topic><topic>Methodology of the Social Sciences</topic><topic>Natural disasters</topic><topic>Natural language processing</topic><topic>Original Article</topic><topic>Semantics</topic><topic>Slang</topic><topic>Social and Behav. Sciences</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Statistics for Social Sciences</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Interdonato, Roberto</creatorcontrib><creatorcontrib>Guillaume, Jean-Loup</creatorcontrib><creatorcontrib>Doucet, Antoine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Interdonato, Roberto</au><au>Guillaume, Jean-Loup</au><au>Doucet, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lightweight and multilingual framework for crisis information extraction from Twitter data</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>65</spage><pages>65-</pages><artnum>65</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed
lightweight crisis management framework
integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-019-0608-4</doi><orcidid>https://orcid.org/0000-0002-0536-6277</orcidid><orcidid>https://orcid.org/0000-0001-6160-3356</orcidid><orcidid>https://orcid.org/0000-0002-4615-1563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-5450 |
ispartof | Social network analysis and mining, 2019-12, Vol.9 (1), p.65, Article 65 |
issn | 1869-5450 1869-5469 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02364502v1 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Springer Nature - Complete Springer Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applications of Graph Theory and Complex Networks Clustering Computer Science Data mining Data Mining and Knowledge Discovery Document and Text Processing Earthquakes Economics Extraction Flexibility Game Theory Humanitarianism Humanities Information retrieval Language Law Lightweight Management of crises Methodology of the Social Sciences Natural disasters Natural language processing Original Article Semantics Slang Social and Behav. Sciences Social networks Statistical analysis Statistics for Social Sciences User behavior |
title | A lightweight and multilingual framework for crisis information extraction from Twitter data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lightweight%20and%20multilingual%20framework%20for%20crisis%20information%20extraction%20from%20Twitter%20data&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Interdonato,%20Roberto&rft.date=2019-12-01&rft.volume=9&rft.issue=1&rft.spage=65&rft.pages=65-&rft.artnum=65&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-019-0608-4&rft_dat=%3Cproquest_hal_p%3E2920272752%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920272752&rft_id=info:pmid/&rfr_iscdi=true |