A lightweight and multilingual framework for crisis information extraction from Twitter data

Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social network analysis and mining 2019-12, Vol.9 (1), p.65, Article 65
Hauptverfasser: Interdonato, Roberto, Guillaume, Jean-Loup, Doucet, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 65
container_title Social network analysis and mining
container_volume 9
creator Interdonato, Roberto
Guillaume, Jean-Loup
Doucet, Antoine
description Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed lightweight crisis management framework integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.
doi_str_mv 10.1007/s13278-019-0608-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02364502v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920272752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWLQ_wF3AlYvRm2QeybIUtULBTd0JIZ1k2tR51CRj9d-bcaSu3Nx7E75zOByErgjcEoDizhNGC54AEQnkwJP0BE0Iz0WSpbk4Pd4ZnKOp9zsAIMCYgHyCXme4tpttOJhhYtVq3PR1sLVtN72qceVUYw6de8NV53DprLce2zY-GhVs12LzGZwqf87KdQ1eHWwIxmGtgrpEZ5WqvZn-7gv08nC_mi-S5fPj03y2TEomeEhSsTZapHmpFKliLENTUbJM8YxroKkptE5ZFeMTXlSQccq1NrTkhun1OsLsAt2MvltVy72zjXJfslNWLmZLOfwBZXnU0w8S2euR3bvuvTc-yF3XuzbGk1RQoAUtMhopMlKl67x3pjraEpBD53LsXMbO5dC5HFLQUeMj226M-3P-X_QNbdmERA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920272752</pqid></control><display><type>article</type><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</creator><creatorcontrib>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</creatorcontrib><description>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed lightweight crisis management framework integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-019-0608-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Applications of Graph Theory and Complex Networks ; Clustering ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Document and Text Processing ; Earthquakes ; Economics ; Extraction ; Flexibility ; Game Theory ; Humanitarianism ; Humanities ; Information retrieval ; Language ; Law ; Lightweight ; Management of crises ; Methodology of the Social Sciences ; Natural disasters ; Natural language processing ; Original Article ; Semantics ; Slang ; Social and Behav. Sciences ; Social networks ; Statistical analysis ; Statistics for Social Sciences ; User behavior</subject><ispartof>Social network analysis and mining, 2019-12, Vol.9 (1), p.65, Article 65</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</citedby><cites>FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</cites><orcidid>0000-0002-0536-6277 ; 0000-0001-6160-3356 ; 0000-0002-4615-1563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13278-019-0608-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920272752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,778,782,883,21375,21376,21377,21378,23243,27911,27912,33517,33690,33731,33992,34301,41475,42544,43646,43774,43792,43940,44054,51306,64370,64374,72224</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02364502$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Interdonato, Roberto</creatorcontrib><creatorcontrib>Guillaume, Jean-Loup</creatorcontrib><creatorcontrib>Doucet, Antoine</creatorcontrib><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed lightweight crisis management framework integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</description><subject>Applications of Graph Theory and Complex Networks</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Document and Text Processing</subject><subject>Earthquakes</subject><subject>Economics</subject><subject>Extraction</subject><subject>Flexibility</subject><subject>Game Theory</subject><subject>Humanitarianism</subject><subject>Humanities</subject><subject>Information retrieval</subject><subject>Language</subject><subject>Law</subject><subject>Lightweight</subject><subject>Management of crises</subject><subject>Methodology of the Social Sciences</subject><subject>Natural disasters</subject><subject>Natural language processing</subject><subject>Original Article</subject><subject>Semantics</subject><subject>Slang</subject><subject>Social and Behav. Sciences</subject><subject>Social networks</subject><subject>Statistical analysis</subject><subject>Statistics for Social Sciences</subject><subject>User behavior</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWLQ_wF3AlYvRm2QeybIUtULBTd0JIZ1k2tR51CRj9d-bcaSu3Nx7E75zOByErgjcEoDizhNGC54AEQnkwJP0BE0Iz0WSpbk4Pd4ZnKOp9zsAIMCYgHyCXme4tpttOJhhYtVq3PR1sLVtN72qceVUYw6de8NV53DprLce2zY-GhVs12LzGZwqf87KdQ1eHWwIxmGtgrpEZ5WqvZn-7gv08nC_mi-S5fPj03y2TEomeEhSsTZapHmpFKliLENTUbJM8YxroKkptE5ZFeMTXlSQccq1NrTkhun1OsLsAt2MvltVy72zjXJfslNWLmZLOfwBZXnU0w8S2euR3bvuvTc-yF3XuzbGk1RQoAUtMhopMlKl67x3pjraEpBD53LsXMbO5dC5HFLQUeMj226M-3P-X_QNbdmERA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Interdonato, Roberto</creator><creator>Guillaume, Jean-Loup</creator><creator>Doucet, Antoine</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0536-6277</orcidid><orcidid>https://orcid.org/0000-0001-6160-3356</orcidid><orcidid>https://orcid.org/0000-0002-4615-1563</orcidid></search><sort><creationdate>20191201</creationdate><title>A lightweight and multilingual framework for crisis information extraction from Twitter data</title><author>Interdonato, Roberto ; Guillaume, Jean-Loup ; Doucet, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-49bed946caa1f390e249c35a858d024e7dd43f450187f05828dde2c8e3dbbe243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Graph Theory and Complex Networks</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Document and Text Processing</topic><topic>Earthquakes</topic><topic>Economics</topic><topic>Extraction</topic><topic>Flexibility</topic><topic>Game Theory</topic><topic>Humanitarianism</topic><topic>Humanities</topic><topic>Information retrieval</topic><topic>Language</topic><topic>Law</topic><topic>Lightweight</topic><topic>Management of crises</topic><topic>Methodology of the Social Sciences</topic><topic>Natural disasters</topic><topic>Natural language processing</topic><topic>Original Article</topic><topic>Semantics</topic><topic>Slang</topic><topic>Social and Behav. Sciences</topic><topic>Social networks</topic><topic>Statistical analysis</topic><topic>Statistics for Social Sciences</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Interdonato, Roberto</creatorcontrib><creatorcontrib>Guillaume, Jean-Loup</creatorcontrib><creatorcontrib>Doucet, Antoine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Interdonato, Roberto</au><au>Guillaume, Jean-Loup</au><au>Doucet, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lightweight and multilingual framework for crisis information extraction from Twitter data</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>65</spage><pages>65-</pages><artnum>65</artnum><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed lightweight crisis management framework integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-019-0608-4</doi><orcidid>https://orcid.org/0000-0002-0536-6277</orcidid><orcidid>https://orcid.org/0000-0001-6160-3356</orcidid><orcidid>https://orcid.org/0000-0002-4615-1563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2019-12, Vol.9 (1), p.65, Article 65
issn 1869-5450
1869-5469
language eng
recordid cdi_hal_primary_oai_HAL_hal_02364502v1
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Springer Nature - Complete Springer Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central
subjects Applications of Graph Theory and Complex Networks
Clustering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Document and Text Processing
Earthquakes
Economics
Extraction
Flexibility
Game Theory
Humanitarianism
Humanities
Information retrieval
Language
Law
Lightweight
Management of crises
Methodology of the Social Sciences
Natural disasters
Natural language processing
Original Article
Semantics
Slang
Social and Behav. Sciences
Social networks
Statistical analysis
Statistics for Social Sciences
User behavior
title A lightweight and multilingual framework for crisis information extraction from Twitter data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lightweight%20and%20multilingual%20framework%20for%20crisis%20information%20extraction%20from%20Twitter%20data&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Interdonato,%20Roberto&rft.date=2019-12-01&rft.volume=9&rft.issue=1&rft.spage=65&rft.pages=65-&rft.artnum=65&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-019-0608-4&rft_dat=%3Cproquest_hal_p%3E2920272752%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920272752&rft_id=info:pmid/&rfr_iscdi=true