Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy
Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV ther...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-10, Vol.12 (10), p.9800-9814 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9814 |
---|---|
container_issue | 10 |
container_start_page | 9800 |
container_title | ACS nano |
container_volume | 12 |
creator | Silva, Amanda K. A Perretta, Silvana Perrod, Guillaume Pidial, Laetitia Lindner, Véronique Carn, Florent Lemieux, Shony Alloyeau, Damien Boucenna, Imane Menasché, Philippe Dallemagne, Bernard Gazeau, Florence Wilhelm, Claire Cellier, Christophe Clément, Olivier Rahmi, Gabriel |
description | Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV therapeutic application, fistula healing, together with a local minimally invasive delivery strategy. Allogenic extracellular vesicles (EVs) from adipose tissue-derived stromal cells (ASCs) are administered in a porcine fistula model through a thermoresponsive Pluronic F-127 (PF-127) gel, injected locally at 4 °C and gelling at body temperature to retain EVs in the entire fistula tract. Complete fistula healing is reported to be 100% for the gel plus EVs group, 67% for the gel group, and 0% for the control, supporting the therapeutic use of Pluronic F-127 gel alone or combined with EVs. However, only the combination of gel and EVs results in a statistically significant (i) reduction of fibrosis, (ii) decline of inflammatory response, (iii) decrease in the density of myofibroblasts, and (iv) increase of angiogenesis. Overall, we demonstrate that ASC-EV delivery into a PF-127 gel represents a successful local minimally invasive strategy to induce a therapeutic effect in a swine fistula model. Our study presents prospects for EV administration strategies and for the management of post-operative fistulas. |
doi_str_mv | 10.1021/acsnano.8b00117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02360370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112197138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-7fc501bec0f6971aa49efbe7e43722f5ee30136e44c754fad74c6093dd2f08e83</originalsourceid><addsrcrecordid>eNp1kUFv2yAUx9HUae26nXebOHaq3IKxjXOM0rSZFKmV1k27IQzPCRU2LuCu-TL7rCNylltPPJ5-_B56f4S-UHJFSU6vpQq97N1V3RBCKX-HzuiMVRmpq98nx7qkp-hjCE-ElLzm1Qd0ykjOaE7qM_T3cQu-cx7C4PpgXgDfgcXLrgGtQeM_Jm7xXJvBBcA_InTZAqzNbsAnVOPla_RSpc5opce_IBhlIeAH7zoXU7EMbtjKDUiLb02IicKrdDH9BpseSzwNz-YqjjIm3w3Y5PW7NMqnxmb3Cb1vpQ3w-XCeo5-3y8fFKlvf331fzNeZZBWPGW9VSWgDirTVjFMpixm0DXAoGM_ztgRghLIKikLxsmil5oWqyIxpnbekhpqdo2-TdyutGLzppN8JJ41Yzddi30sLqwjj5IUm9mJiB--eRwhRdCbslyB7cGMQOaU5Tb9ge-31hCrvQvDQHt2UiH2A4hCgOASYXnw9yMemA33k_yeWgMsJSC_Fkxt9n_bypu4fU_OpAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112197138</pqid></control><display><type>article</type><title>Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy</title><source>American Chemical Society Journals</source><creator>Silva, Amanda K. A ; Perretta, Silvana ; Perrod, Guillaume ; Pidial, Laetitia ; Lindner, Véronique ; Carn, Florent ; Lemieux, Shony ; Alloyeau, Damien ; Boucenna, Imane ; Menasché, Philippe ; Dallemagne, Bernard ; Gazeau, Florence ; Wilhelm, Claire ; Cellier, Christophe ; Clément, Olivier ; Rahmi, Gabriel</creator><creatorcontrib>Silva, Amanda K. A ; Perretta, Silvana ; Perrod, Guillaume ; Pidial, Laetitia ; Lindner, Véronique ; Carn, Florent ; Lemieux, Shony ; Alloyeau, Damien ; Boucenna, Imane ; Menasché, Philippe ; Dallemagne, Bernard ; Gazeau, Florence ; Wilhelm, Claire ; Cellier, Christophe ; Clément, Olivier ; Rahmi, Gabriel</creatorcontrib><description>Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV therapeutic application, fistula healing, together with a local minimally invasive delivery strategy. Allogenic extracellular vesicles (EVs) from adipose tissue-derived stromal cells (ASCs) are administered in a porcine fistula model through a thermoresponsive Pluronic F-127 (PF-127) gel, injected locally at 4 °C and gelling at body temperature to retain EVs in the entire fistula tract. Complete fistula healing is reported to be 100% for the gel plus EVs group, 67% for the gel group, and 0% for the control, supporting the therapeutic use of Pluronic F-127 gel alone or combined with EVs. However, only the combination of gel and EVs results in a statistically significant (i) reduction of fibrosis, (ii) decline of inflammatory response, (iii) decrease in the density of myofibroblasts, and (iv) increase of angiogenesis. Overall, we demonstrate that ASC-EV delivery into a PF-127 gel represents a successful local minimally invasive strategy to induce a therapeutic effect in a swine fistula model. Our study presents prospects for EV administration strategies and for the management of post-operative fistulas.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00117</identifier><identifier>PMID: 30231208</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Life Sciences ; Physics</subject><ispartof>ACS nano, 2018-10, Vol.12 (10), p.9800-9814</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-7fc501bec0f6971aa49efbe7e43722f5ee30136e44c754fad74c6093dd2f08e83</citedby><cites>FETCH-LOGICAL-a367t-7fc501bec0f6971aa49efbe7e43722f5ee30136e44c754fad74c6093dd2f08e83</cites><orcidid>0000-0002-9452-1450 ; 0000-0002-6482-3597 ; 0000-0001-7024-9627 ; 0000-0002-6528-5698 ; 0000-0002-6890-671X ; 0000-0002-7842-3658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b00117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b00117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30231208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02360370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Amanda K. A</creatorcontrib><creatorcontrib>Perretta, Silvana</creatorcontrib><creatorcontrib>Perrod, Guillaume</creatorcontrib><creatorcontrib>Pidial, Laetitia</creatorcontrib><creatorcontrib>Lindner, Véronique</creatorcontrib><creatorcontrib>Carn, Florent</creatorcontrib><creatorcontrib>Lemieux, Shony</creatorcontrib><creatorcontrib>Alloyeau, Damien</creatorcontrib><creatorcontrib>Boucenna, Imane</creatorcontrib><creatorcontrib>Menasché, Philippe</creatorcontrib><creatorcontrib>Dallemagne, Bernard</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><creatorcontrib>Cellier, Christophe</creatorcontrib><creatorcontrib>Clément, Olivier</creatorcontrib><creatorcontrib>Rahmi, Gabriel</creatorcontrib><title>Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV therapeutic application, fistula healing, together with a local minimally invasive delivery strategy. Allogenic extracellular vesicles (EVs) from adipose tissue-derived stromal cells (ASCs) are administered in a porcine fistula model through a thermoresponsive Pluronic F-127 (PF-127) gel, injected locally at 4 °C and gelling at body temperature to retain EVs in the entire fistula tract. Complete fistula healing is reported to be 100% for the gel plus EVs group, 67% for the gel group, and 0% for the control, supporting the therapeutic use of Pluronic F-127 gel alone or combined with EVs. However, only the combination of gel and EVs results in a statistically significant (i) reduction of fibrosis, (ii) decline of inflammatory response, (iii) decrease in the density of myofibroblasts, and (iv) increase of angiogenesis. Overall, we demonstrate that ASC-EV delivery into a PF-127 gel represents a successful local minimally invasive strategy to induce a therapeutic effect in a swine fistula model. Our study presents prospects for EV administration strategies and for the management of post-operative fistulas.</description><subject>Life Sciences</subject><subject>Physics</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv2yAUx9HUae26nXebOHaq3IKxjXOM0rSZFKmV1k27IQzPCRU2LuCu-TL7rCNylltPPJ5-_B56f4S-UHJFSU6vpQq97N1V3RBCKX-HzuiMVRmpq98nx7qkp-hjCE-ElLzm1Qd0ykjOaE7qM_T3cQu-cx7C4PpgXgDfgcXLrgGtQeM_Jm7xXJvBBcA_InTZAqzNbsAnVOPla_RSpc5opce_IBhlIeAH7zoXU7EMbtjKDUiLb02IicKrdDH9BpseSzwNz-YqjjIm3w3Y5PW7NMqnxmb3Cb1vpQ3w-XCeo5-3y8fFKlvf331fzNeZZBWPGW9VSWgDirTVjFMpixm0DXAoGM_ztgRghLIKikLxsmil5oWqyIxpnbekhpqdo2-TdyutGLzppN8JJ41Yzddi30sLqwjj5IUm9mJiB--eRwhRdCbslyB7cGMQOaU5Tb9ge-31hCrvQvDQHt2UiH2A4hCgOASYXnw9yMemA33k_yeWgMsJSC_Fkxt9n_bypu4fU_OpAA</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Silva, Amanda K. A</creator><creator>Perretta, Silvana</creator><creator>Perrod, Guillaume</creator><creator>Pidial, Laetitia</creator><creator>Lindner, Véronique</creator><creator>Carn, Florent</creator><creator>Lemieux, Shony</creator><creator>Alloyeau, Damien</creator><creator>Boucenna, Imane</creator><creator>Menasché, Philippe</creator><creator>Dallemagne, Bernard</creator><creator>Gazeau, Florence</creator><creator>Wilhelm, Claire</creator><creator>Cellier, Christophe</creator><creator>Clément, Olivier</creator><creator>Rahmi, Gabriel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9452-1450</orcidid><orcidid>https://orcid.org/0000-0002-6482-3597</orcidid><orcidid>https://orcid.org/0000-0001-7024-9627</orcidid><orcidid>https://orcid.org/0000-0002-6528-5698</orcidid><orcidid>https://orcid.org/0000-0002-6890-671X</orcidid><orcidid>https://orcid.org/0000-0002-7842-3658</orcidid></search><sort><creationdate>20181023</creationdate><title>Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy</title><author>Silva, Amanda K. A ; Perretta, Silvana ; Perrod, Guillaume ; Pidial, Laetitia ; Lindner, Véronique ; Carn, Florent ; Lemieux, Shony ; Alloyeau, Damien ; Boucenna, Imane ; Menasché, Philippe ; Dallemagne, Bernard ; Gazeau, Florence ; Wilhelm, Claire ; Cellier, Christophe ; Clément, Olivier ; Rahmi, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-7fc501bec0f6971aa49efbe7e43722f5ee30136e44c754fad74c6093dd2f08e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Life Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Amanda K. A</creatorcontrib><creatorcontrib>Perretta, Silvana</creatorcontrib><creatorcontrib>Perrod, Guillaume</creatorcontrib><creatorcontrib>Pidial, Laetitia</creatorcontrib><creatorcontrib>Lindner, Véronique</creatorcontrib><creatorcontrib>Carn, Florent</creatorcontrib><creatorcontrib>Lemieux, Shony</creatorcontrib><creatorcontrib>Alloyeau, Damien</creatorcontrib><creatorcontrib>Boucenna, Imane</creatorcontrib><creatorcontrib>Menasché, Philippe</creatorcontrib><creatorcontrib>Dallemagne, Bernard</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><creatorcontrib>Cellier, Christophe</creatorcontrib><creatorcontrib>Clément, Olivier</creatorcontrib><creatorcontrib>Rahmi, Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Amanda K. A</au><au>Perretta, Silvana</au><au>Perrod, Guillaume</au><au>Pidial, Laetitia</au><au>Lindner, Véronique</au><au>Carn, Florent</au><au>Lemieux, Shony</au><au>Alloyeau, Damien</au><au>Boucenna, Imane</au><au>Menasché, Philippe</au><au>Dallemagne, Bernard</au><au>Gazeau, Florence</au><au>Wilhelm, Claire</au><au>Cellier, Christophe</au><au>Clément, Olivier</au><au>Rahmi, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>12</volume><issue>10</issue><spage>9800</spage><epage>9814</epage><pages>9800-9814</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV therapeutic application, fistula healing, together with a local minimally invasive delivery strategy. Allogenic extracellular vesicles (EVs) from adipose tissue-derived stromal cells (ASCs) are administered in a porcine fistula model through a thermoresponsive Pluronic F-127 (PF-127) gel, injected locally at 4 °C and gelling at body temperature to retain EVs in the entire fistula tract. Complete fistula healing is reported to be 100% for the gel plus EVs group, 67% for the gel group, and 0% for the control, supporting the therapeutic use of Pluronic F-127 gel alone or combined with EVs. However, only the combination of gel and EVs results in a statistically significant (i) reduction of fibrosis, (ii) decline of inflammatory response, (iii) decrease in the density of myofibroblasts, and (iv) increase of angiogenesis. Overall, we demonstrate that ASC-EV delivery into a PF-127 gel represents a successful local minimally invasive strategy to induce a therapeutic effect in a swine fistula model. Our study presents prospects for EV administration strategies and for the management of post-operative fistulas.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30231208</pmid><doi>10.1021/acsnano.8b00117</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9452-1450</orcidid><orcidid>https://orcid.org/0000-0002-6482-3597</orcidid><orcidid>https://orcid.org/0000-0001-7024-9627</orcidid><orcidid>https://orcid.org/0000-0002-6528-5698</orcidid><orcidid>https://orcid.org/0000-0002-6890-671X</orcidid><orcidid>https://orcid.org/0000-0002-7842-3658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-10, Vol.12 (10), p.9800-9814 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02360370v1 |
source | American Chemical Society Journals |
subjects | Life Sciences Physics |
title | Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T13%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoresponsive%20Gel%20Embedded%20with%20Adipose%20Stem-Cell-Derived%20Extracellular%20Vesicles%20Promotes%20Esophageal%20Fistula%20Healing%20in%20a%20Thermo-Actuated%20Delivery%20Strategy&rft.jtitle=ACS%20nano&rft.au=Silva,%20Amanda%20K.%20A&rft.date=2018-10-23&rft.volume=12&rft.issue=10&rft.spage=9800&rft.epage=9814&rft.pages=9800-9814&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00117&rft_dat=%3Cproquest_hal_p%3E2112197138%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112197138&rft_id=info:pmid/30231208&rfr_iscdi=true |