Actomyosin controls planarity and folding of epithelia in response to compression

Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-01, Vol.19 (1), p.109-117
Hauptverfasser: Wyatt, Tom P. J., Fouchard, Jonathan, Lisica, Ana, Khalilgharibi, Nargess, Baum, Buzz, Recho, Pierre, Kabla, Alexandre J., Charras, Guillaume T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 109
container_title Nature materials
container_volume 19
creator Wyatt, Tom P. J.
Fouchard, Jonathan
Lisica, Ana
Khalilgharibi, Nargess
Baum, Buzz
Recho, Pierre
Kabla, Alexandre J.
Charras, Guillaume T.
description Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5–80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a ‘buckling threshold’ of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis. Epithelial tissues behave as pre-tensed viscoelastic sheets that can buffer against compression and rapidly recover from buckling. Epithelial mechanical properties define a tissue-intrinsic buckling threshold that dictates the compressive strain above which tissue folds become permanent.
doi_str_mv 10.1038/s41563-019-0461-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02359375v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328304810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f97c8c8dc956606fffd05338be82cada2b3642fe10eacfb6029afc3d46817ab23</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVJaNJpf0A3wZBNu3Cqq5fl5RDaJjBQAulayLKUKNiSI3lC5t9HgycpBLrS6zvn3quD0FfAF4Cp_JEZcEFrDG2NmYD6-QM6BdaImgmBjw57AEJO0KecHzAmwLn4iE4oMA5NI0_RzdrMcdzF7ENlYphTHHI1DTro5OddpUNfuTj0PtxV0VV28vO9HbyuCp5snmLItppjkY5TOWcfw2d07PSQ7ZfDukJ_f_28vbyqN39-X1-uN7VhUsy1axsjjexNy0uzwjnXY06p7KwkRveadFQw4ixgq43rBCatdob2TEhodEfoCn1ffO_1oKbkR512KmqvrtYbtb_DhPKWNvwJCvttYacUH7c2z2r02dihzGnjNitCJJQf5c0ePX-HPsRtCmUSRSiRFDNZyBWChTIp5pyse-sAsNpno5ZsVMlG7bNRz0VzdnDedqPt3xSvYRSALEAuT-HOpn-l_-_6Am6Tmhk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328304810</pqid></control><display><type>article</type><title>Actomyosin controls planarity and folding of epithelia in response to compression</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Wyatt, Tom P. J. ; Fouchard, Jonathan ; Lisica, Ana ; Khalilgharibi, Nargess ; Baum, Buzz ; Recho, Pierre ; Kabla, Alexandre J. ; Charras, Guillaume T.</creator><creatorcontrib>Wyatt, Tom P. J. ; Fouchard, Jonathan ; Lisica, Ana ; Khalilgharibi, Nargess ; Baum, Buzz ; Recho, Pierre ; Kabla, Alexandre J. ; Charras, Guillaume T.</creatorcontrib><description>Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5–80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a ‘buckling threshold’ of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis. Epithelial tissues behave as pre-tensed viscoelastic sheets that can buffer against compression and rapidly recover from buckling. Epithelial mechanical properties define a tissue-intrinsic buckling threshold that dictates the compressive strain above which tissue folds become permanent.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0461-x</identifier><identifier>PMID: 31451778</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/136 ; 631/57 ; 639/301/54/994 ; Actomyosin ; Actomyosin - chemistry ; Adaptation ; Animals ; Biological Physics ; Biology ; Biomaterials ; Buckling ; Cadherins - physiology ; Chemistry and Materials Science ; Compressive properties ; Compressive Strength ; Condensed Matter Physics ; Cytoskeleton ; Deformation ; Dogs ; Elasticity ; Epithelial Cells - cytology ; Epithelium - embryology ; Epithelium - physiology ; Green Fluorescent Proteins ; Madin Darby Canine Kidney Cells ; Materials Science ; Mechanical properties ; Microscopy, Confocal ; Models, Biological ; Morphogenesis ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Stress, Mechanical ; University colleges ; Viscosity</subject><ispartof>Nature materials, 2020-01, Vol.19 (1), p.109-117</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Jan 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f97c8c8dc956606fffd05338be82cada2b3642fe10eacfb6029afc3d46817ab23</citedby><cites>FETCH-LOGICAL-c486t-f97c8c8dc956606fffd05338be82cada2b3642fe10eacfb6029afc3d46817ab23</cites><orcidid>0000-0002-7902-0279 ; 0000-0002-9201-6186 ; 0000-0001-8259-0582 ; 0000-0002-0280-3531 ; 0000-0002-9976-462X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0461-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0461-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02359375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wyatt, Tom P. J.</creatorcontrib><creatorcontrib>Fouchard, Jonathan</creatorcontrib><creatorcontrib>Lisica, Ana</creatorcontrib><creatorcontrib>Khalilgharibi, Nargess</creatorcontrib><creatorcontrib>Baum, Buzz</creatorcontrib><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Kabla, Alexandre J.</creatorcontrib><creatorcontrib>Charras, Guillaume T.</creatorcontrib><title>Actomyosin controls planarity and folding of epithelia in response to compression</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5–80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a ‘buckling threshold’ of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis. Epithelial tissues behave as pre-tensed viscoelastic sheets that can buffer against compression and rapidly recover from buckling. Epithelial mechanical properties define a tissue-intrinsic buckling threshold that dictates the compressive strain above which tissue folds become permanent.</description><subject>631/136</subject><subject>631/57</subject><subject>639/301/54/994</subject><subject>Actomyosin</subject><subject>Actomyosin - chemistry</subject><subject>Adaptation</subject><subject>Animals</subject><subject>Biological Physics</subject><subject>Biology</subject><subject>Biomaterials</subject><subject>Buckling</subject><subject>Cadherins - physiology</subject><subject>Chemistry and Materials Science</subject><subject>Compressive properties</subject><subject>Compressive Strength</subject><subject>Condensed Matter Physics</subject><subject>Cytoskeleton</subject><subject>Deformation</subject><subject>Dogs</subject><subject>Elasticity</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelium - embryology</subject><subject>Epithelium - physiology</subject><subject>Green Fluorescent Proteins</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microscopy, Confocal</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Stress, Mechanical</subject><subject>University colleges</subject><subject>Viscosity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtr3DAUhUVJaNJpf0A3wZBNu3Cqq5fl5RDaJjBQAulayLKUKNiSI3lC5t9HgycpBLrS6zvn3quD0FfAF4Cp_JEZcEFrDG2NmYD6-QM6BdaImgmBjw57AEJO0KecHzAmwLn4iE4oMA5NI0_RzdrMcdzF7ENlYphTHHI1DTro5OddpUNfuTj0PtxV0VV28vO9HbyuCp5snmLItppjkY5TOWcfw2d07PSQ7ZfDukJ_f_28vbyqN39-X1-uN7VhUsy1axsjjexNy0uzwjnXY06p7KwkRveadFQw4ixgq43rBCatdob2TEhodEfoCn1ffO_1oKbkR512KmqvrtYbtb_DhPKWNvwJCvttYacUH7c2z2r02dihzGnjNitCJJQf5c0ePX-HPsRtCmUSRSiRFDNZyBWChTIp5pyse-sAsNpno5ZsVMlG7bNRz0VzdnDedqPt3xSvYRSALEAuT-HOpn-l_-_6Am6Tmhk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wyatt, Tom P. J.</creator><creator>Fouchard, Jonathan</creator><creator>Lisica, Ana</creator><creator>Khalilgharibi, Nargess</creator><creator>Baum, Buzz</creator><creator>Recho, Pierre</creator><creator>Kabla, Alexandre J.</creator><creator>Charras, Guillaume T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7902-0279</orcidid><orcidid>https://orcid.org/0000-0002-9201-6186</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid><orcidid>https://orcid.org/0000-0002-0280-3531</orcidid><orcidid>https://orcid.org/0000-0002-9976-462X</orcidid></search><sort><creationdate>20200101</creationdate><title>Actomyosin controls planarity and folding of epithelia in response to compression</title><author>Wyatt, Tom P. J. ; Fouchard, Jonathan ; Lisica, Ana ; Khalilgharibi, Nargess ; Baum, Buzz ; Recho, Pierre ; Kabla, Alexandre J. ; Charras, Guillaume T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f97c8c8dc956606fffd05338be82cada2b3642fe10eacfb6029afc3d46817ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/136</topic><topic>631/57</topic><topic>639/301/54/994</topic><topic>Actomyosin</topic><topic>Actomyosin - chemistry</topic><topic>Adaptation</topic><topic>Animals</topic><topic>Biological Physics</topic><topic>Biology</topic><topic>Biomaterials</topic><topic>Buckling</topic><topic>Cadherins - physiology</topic><topic>Chemistry and Materials Science</topic><topic>Compressive properties</topic><topic>Compressive Strength</topic><topic>Condensed Matter Physics</topic><topic>Cytoskeleton</topic><topic>Deformation</topic><topic>Dogs</topic><topic>Elasticity</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelium - embryology</topic><topic>Epithelium - physiology</topic><topic>Green Fluorescent Proteins</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microscopy, Confocal</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Stress, Mechanical</topic><topic>University colleges</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wyatt, Tom P. J.</creatorcontrib><creatorcontrib>Fouchard, Jonathan</creatorcontrib><creatorcontrib>Lisica, Ana</creatorcontrib><creatorcontrib>Khalilgharibi, Nargess</creatorcontrib><creatorcontrib>Baum, Buzz</creatorcontrib><creatorcontrib>Recho, Pierre</creatorcontrib><creatorcontrib>Kabla, Alexandre J.</creatorcontrib><creatorcontrib>Charras, Guillaume T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wyatt, Tom P. J.</au><au>Fouchard, Jonathan</au><au>Lisica, Ana</au><au>Khalilgharibi, Nargess</au><au>Baum, Buzz</au><au>Recho, Pierre</au><au>Kabla, Alexandre J.</au><au>Charras, Guillaume T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actomyosin controls planarity and folding of epithelia in response to compression</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5–80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a ‘buckling threshold’ of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis. Epithelial tissues behave as pre-tensed viscoelastic sheets that can buffer against compression and rapidly recover from buckling. Epithelial mechanical properties define a tissue-intrinsic buckling threshold that dictates the compressive strain above which tissue folds become permanent.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31451778</pmid><doi>10.1038/s41563-019-0461-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7902-0279</orcidid><orcidid>https://orcid.org/0000-0002-9201-6186</orcidid><orcidid>https://orcid.org/0000-0001-8259-0582</orcidid><orcidid>https://orcid.org/0000-0002-0280-3531</orcidid><orcidid>https://orcid.org/0000-0002-9976-462X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-01, Vol.19 (1), p.109-117
issn 1476-1122
1476-4660
language eng
recordid cdi_hal_primary_oai_HAL_hal_02359375v1
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/136
631/57
639/301/54/994
Actomyosin
Actomyosin - chemistry
Adaptation
Animals
Biological Physics
Biology
Biomaterials
Buckling
Cadherins - physiology
Chemistry and Materials Science
Compressive properties
Compressive Strength
Condensed Matter Physics
Cytoskeleton
Deformation
Dogs
Elasticity
Epithelial Cells - cytology
Epithelium - embryology
Epithelium - physiology
Green Fluorescent Proteins
Madin Darby Canine Kidney Cells
Materials Science
Mechanical properties
Microscopy, Confocal
Models, Biological
Morphogenesis
Nanotechnology
Optical and Electronic Materials
Physics
Stress, Mechanical
University colleges
Viscosity
title Actomyosin controls planarity and folding of epithelia in response to compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actomyosin%20controls%20planarity%20and%20folding%20of%20epithelia%20in%20response%20to%20compression&rft.jtitle=Nature%20materials&rft.au=Wyatt,%20Tom%20P.%20J.&rft.date=2020-01-01&rft.volume=19&rft.issue=1&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0461-x&rft_dat=%3Cproquest_hal_p%3E2328304810%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328304810&rft_id=info:pmid/31451778&rfr_iscdi=true