Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces

A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2020-09, Vol.64 (2), p.386-395
Hauptverfasser: Colin de Verdière, Éric, Medina, Carolina, Roldán-Pensado, Edgardo, Salazar, Gelasio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 2
container_start_page 386
container_title Discrete & computational geometry
container_volume 64
creator Colin de Verdière, Éric
Medina, Carolina
Roldán-Pensado, Edgardo
Salazar, Gelasio
description A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus  g if and only if all of its subarrangements of size at most 4 g + 4 are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an arrangement of graphs .
doi_str_mv 10.1007/s00454-019-00126-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02357291v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278322559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuCV15Uz8lHs1yOMTdhoKBehzRNXUfXzqQV9u9NreidV4ecPO_L4SHkGuEOAeR9AOCCp4AqBUCapdkJmSBnNAXO-SmZAEqVCiazc3IRwg4ir2A2IcvlPndFYfKqrrpj0pbJ3HvTvLu9a7owvJ-D64vWVt7WLiSmKZKVN4dt_GuSl96XxrpwSc5KUwd39TOn5O1h-bpYp5un1eNivkktA96lubBqxmnJZ5izEh1ahjkWhZCydEYVVsZjlXQCwVFmoTTMGYsMQUjFrWJTcjv2bk2tD77aG3_Uran0er7Rww4oE5Iq_MTI3ozswbcfvQud3rW9b-J5mlI5Y5QKMTTSkbK-DcG78rcWQQ9q9ahWR7X6W63OYoiNoRDh6Mr_Vf-T-gJMEHok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278322559</pqid></control><display><type>article</type><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</creator><creatorcontrib>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</creatorcontrib><description>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus  g if and only if all of its subarrangements of size at most 4 g + 4 are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an arrangement of graphs .</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-019-00126-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Branko Grünbaum Memorial Issue ; Combinatorics ; Computational Geometry ; Computational Mathematics and Numerical Analysis ; Computer Science ; Discrete Mathematics ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Discrete &amp; computational geometry, 2020-09, Vol.64 (2), p.386-395</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-019-00126-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-019-00126-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02357291$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colin de Verdière, Éric</creatorcontrib><creatorcontrib>Medina, Carolina</creatorcontrib><creatorcontrib>Roldán-Pensado, Edgardo</creatorcontrib><creatorcontrib>Salazar, Gelasio</creatorcontrib><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus  g if and only if all of its subarrangements of size at most 4 g + 4 are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an arrangement of graphs .</description><subject>Branko Grünbaum Memorial Issue</subject><subject>Combinatorics</subject><subject>Computational Geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuCV15Uz8lHs1yOMTdhoKBehzRNXUfXzqQV9u9NreidV4ecPO_L4SHkGuEOAeR9AOCCp4AqBUCapdkJmSBnNAXO-SmZAEqVCiazc3IRwg4ir2A2IcvlPndFYfKqrrpj0pbJ3HvTvLu9a7owvJ-D64vWVt7WLiSmKZKVN4dt_GuSl96XxrpwSc5KUwd39TOn5O1h-bpYp5un1eNivkktA96lubBqxmnJZ5izEh1ahjkWhZCydEYVVsZjlXQCwVFmoTTMGYsMQUjFrWJTcjv2bk2tD77aG3_Uran0er7Rww4oE5Iq_MTI3ozswbcfvQud3rW9b-J5mlI5Y5QKMTTSkbK-DcG78rcWQQ9q9ahWR7X6W63OYoiNoRDh6Mr_Vf-T-gJMEHok</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Colin de Verdière, Éric</creator><creator>Medina, Carolina</creator><creator>Roldán-Pensado, Edgardo</creator><creator>Salazar, Gelasio</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20200901</creationdate><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><author>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Branko Grünbaum Memorial Issue</topic><topic>Combinatorics</topic><topic>Computational Geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colin de Verdière, Éric</creatorcontrib><creatorcontrib>Medina, Carolina</creatorcontrib><creatorcontrib>Roldán-Pensado, Edgardo</creatorcontrib><creatorcontrib>Salazar, Gelasio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colin de Verdière, Éric</au><au>Medina, Carolina</au><au>Roldán-Pensado, Edgardo</au><au>Salazar, Gelasio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>64</volume><issue>2</issue><spage>386</spage><epage>395</epage><pages>386-395</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus  g if and only if all of its subarrangements of size at most 4 g + 4 are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an arrangement of graphs .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-019-00126-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2020-09, Vol.64 (2), p.386-395
issn 0179-5376
1432-0444
language eng
recordid cdi_hal_primary_oai_HAL_hal_02357291v1
source SpringerLink Journals - AutoHoldings
subjects Branko Grünbaum Memorial Issue
Combinatorics
Computational Geometry
Computational Mathematics and Numerical Analysis
Computer Science
Discrete Mathematics
Graphs
Mathematics
Mathematics and Statistics
title Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embeddability%20of%20Arrangements%20of%20Pseudocircles%20and%20Graphs%20on%20Surfaces&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Colin%20de%20Verdi%C3%A8re,%20%C3%89ric&rft.date=2020-09-01&rft.volume=64&rft.issue=2&rft.spage=386&rft.epage=395&rft.pages=386-395&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-019-00126-6&rft_dat=%3Cproquest_hal_p%3E2278322559%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278322559&rft_id=info:pmid/&rfr_iscdi=true