Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces
A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its sub...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2020-09, Vol.64 (2), p.386-395 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 2 |
container_start_page | 386 |
container_title | Discrete & computational geometry |
container_volume | 64 |
creator | Colin de Verdière, Éric Medina, Carolina Roldán-Pensado, Edgardo Salazar, Gelasio |
description | A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus
g
if and only if all of its subarrangements of size at most
4
g
+
4
are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an
arrangement of graphs
. |
doi_str_mv | 10.1007/s00454-019-00126-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02357291v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278322559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuCV15Uz8lHs1yOMTdhoKBehzRNXUfXzqQV9u9NreidV4ecPO_L4SHkGuEOAeR9AOCCp4AqBUCapdkJmSBnNAXO-SmZAEqVCiazc3IRwg4ir2A2IcvlPndFYfKqrrpj0pbJ3HvTvLu9a7owvJ-D64vWVt7WLiSmKZKVN4dt_GuSl96XxrpwSc5KUwd39TOn5O1h-bpYp5un1eNivkktA96lubBqxmnJZ5izEh1ahjkWhZCydEYVVsZjlXQCwVFmoTTMGYsMQUjFrWJTcjv2bk2tD77aG3_Uran0er7Rww4oE5Iq_MTI3ozswbcfvQud3rW9b-J5mlI5Y5QKMTTSkbK-DcG78rcWQQ9q9ahWR7X6W63OYoiNoRDh6Mr_Vf-T-gJMEHok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278322559</pqid></control><display><type>article</type><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</creator><creatorcontrib>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</creatorcontrib><description>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus
g
if and only if all of its subarrangements of size at most
4
g
+
4
are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an
arrangement of graphs
.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-019-00126-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Branko Grünbaum Memorial Issue ; Combinatorics ; Computational Geometry ; Computational Mathematics and Numerical Analysis ; Computer Science ; Discrete Mathematics ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Discrete & computational geometry, 2020-09, Vol.64 (2), p.386-395</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-019-00126-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-019-00126-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02357291$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colin de Verdière, Éric</creatorcontrib><creatorcontrib>Medina, Carolina</creatorcontrib><creatorcontrib>Roldán-Pensado, Edgardo</creatorcontrib><creatorcontrib>Salazar, Gelasio</creatorcontrib><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus
g
if and only if all of its subarrangements of size at most
4
g
+
4
are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an
arrangement of graphs
.</description><subject>Branko Grünbaum Memorial Issue</subject><subject>Combinatorics</subject><subject>Computational Geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuCV15Uz8lHs1yOMTdhoKBehzRNXUfXzqQV9u9NreidV4ecPO_L4SHkGuEOAeR9AOCCp4AqBUCapdkJmSBnNAXO-SmZAEqVCiazc3IRwg4ir2A2IcvlPndFYfKqrrpj0pbJ3HvTvLu9a7owvJ-D64vWVt7WLiSmKZKVN4dt_GuSl96XxrpwSc5KUwd39TOn5O1h-bpYp5un1eNivkktA96lubBqxmnJZ5izEh1ahjkWhZCydEYVVsZjlXQCwVFmoTTMGYsMQUjFrWJTcjv2bk2tD77aG3_Uran0er7Rww4oE5Iq_MTI3ozswbcfvQud3rW9b-J5mlI5Y5QKMTTSkbK-DcG78rcWQQ9q9ahWR7X6W63OYoiNoRDh6Mr_Vf-T-gJMEHok</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Colin de Verdière, Éric</creator><creator>Medina, Carolina</creator><creator>Roldán-Pensado, Edgardo</creator><creator>Salazar, Gelasio</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20200901</creationdate><title>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</title><author>Colin de Verdière, Éric ; Medina, Carolina ; Roldán-Pensado, Edgardo ; Salazar, Gelasio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-b5c9842f481b3f1e1c31b1dd577fea9dc744497e510e23c0fa3eac13105794c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Branko Grünbaum Memorial Issue</topic><topic>Combinatorics</topic><topic>Computational Geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colin de Verdière, Éric</creatorcontrib><creatorcontrib>Medina, Carolina</creatorcontrib><creatorcontrib>Roldán-Pensado, Edgardo</creatorcontrib><creatorcontrib>Salazar, Gelasio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colin de Verdière, Éric</au><au>Medina, Carolina</au><au>Roldán-Pensado, Edgardo</au><au>Salazar, Gelasio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>64</volume><issue>2</issue><spage>386</spage><epage>395</epage><pages>386-395</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross. Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most four are embeddable into the sphere, and asked if an analogous result holds for embeddability into orientable surfaces of higher genus. We answer this question positively: An arrangement of pseudocircles is embeddable into an orientable surface of genus
g
if and only if all of its subarrangements of size at most
4
g
+
4
are. Moreover, this bound is tight. We actually have similar results for a much general notion of arrangement, which we call an
arrangement of graphs
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-019-00126-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2020-09, Vol.64 (2), p.386-395 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02357291v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Branko Grünbaum Memorial Issue Combinatorics Computational Geometry Computational Mathematics and Numerical Analysis Computer Science Discrete Mathematics Graphs Mathematics Mathematics and Statistics |
title | Embeddability of Arrangements of Pseudocircles and Graphs on Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embeddability%20of%20Arrangements%20of%20Pseudocircles%20and%20Graphs%20on%20Surfaces&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Colin%20de%20Verdi%C3%A8re,%20%C3%89ric&rft.date=2020-09-01&rft.volume=64&rft.issue=2&rft.spage=386&rft.epage=395&rft.pages=386-395&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-019-00126-6&rft_dat=%3Cproquest_hal_p%3E2278322559%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278322559&rft_id=info:pmid/&rfr_iscdi=true |