An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model‐based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-08, Vol.122 (15), p.8153-8172
Hauptverfasser: Kim, Hye‐Won, Yeom, Jong‐Min, Shin, Daegeun, Choi, Sungwon, Han, Kyung‐Soo, Roujean, Jean‐Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8172
container_issue 15
container_start_page 8153
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Kim, Hye‐Won
Yeom, Jong‐Min
Shin, Daegeun
Choi, Sungwon
Han, Kyung‐Soo
Roujean, Jean‐Louis
description In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model‐based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle‐dependent geostationary sensor geometry. For quantitative validation, Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35). Key Points Thin cloud detection algorithm over land area was suggested with geostationary ocean color satellite imagery Background reflectance of the surface underneath the cloud is simulated with bidirectional reflectance distribution function model Agreement between CALIPSO and new cloud detection algorithm was over 94% when detecting thin cloud (altostratus and cirrus) during study period
doi_str_mv 10.1002/2017JD026707
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02354407v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931795204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3795-7182b1fd41a8649e80da3bf62a226ee58b0832737e8a536a160b162a1d96eae43</originalsourceid><addsrcrecordid>eNp9kcluE0EQhkcIJKIkNx6gJC5EwqGXWblZDjgOliyxSNxGNdM1dofxtNMLaG48As_HkSehnUFRTvSlu6u-_69SVZK84OySMybeCMaLmysm8oIVT5ITwfNqVlZV_vThXXx9npw7d8viKZlMs_Qk-T0fAJ0j5_Y0eDAd-J0eoO1NUKDIU-u1GaAZAQ-HftTDFhqttJ3i2IOlro8fHFoCpZ23ugn3ki4Mk3ZvFPV_fv5q0JGCBttvW2vCoMAF22GUPbYI7lhiScZ5vK9gR9i0hAMsTG8srPa4JQuvlpvF6uItzKGNruB8UCN0Mf_JBL-DD8YSniXPOuwdnf-7T5Mv7999XlzP1pvlajFfz1pZVNms4KVoeKdSjmWeVlQyhbLpcoFC5ERZ2bBSikIWVGImc-Q5a3jMclXlhJTK0-Ri8t1hXx-s3seea4O6vp6v62OMCZmlKSu-88i-nNiDNXeBnK9vTbBxjq7mleSxH8GOjq8nqrXGuTieB1vO6uOy68fLjric8B-6p_G_bH2z_HiVySrL5F_a-67n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931795204</pqid></control><display><type>article</type><title>An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Hye‐Won ; Yeom, Jong‐Min ; Shin, Daegeun ; Choi, Sungwon ; Han, Kyung‐Soo ; Roujean, Jean‐Louis</creator><creatorcontrib>Kim, Hye‐Won ; Yeom, Jong‐Min ; Shin, Daegeun ; Choi, Sungwon ; Han, Kyung‐Soo ; Roujean, Jean‐Louis</creatorcontrib><description>In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model‐based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle‐dependent geostationary sensor geometry. For quantitative validation, Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35). Key Points Thin cloud detection algorithm over land area was suggested with geostationary ocean color satellite imagery Background reflectance of the surface underneath the cloud is simulated with bidirectional reflectance distribution function model Agreement between CALIPSO and new cloud detection algorithm was over 94% when detecting thin cloud (altostratus and cirrus) during study period</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2017JD026707</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Altostratus clouds ; Bidirectional reflectance ; BRDF model ; CALIPSO ; CALIPSO (Pathfinder satellite) ; Case studies ; Cirrus clouds ; Cloud detection ; Clouds ; Color imagery ; Computer simulation ; Continental interfaces, environment ; Data processing ; Detection ; Distribution ; Geophysics ; GOCI ; Ice ; Image processing ; Imagery ; Imaging techniques ; Lidar ; Masking ; Mathematical models ; Meteorological satellites ; MODIS ; Ocean color ; Ocean colour ; Oceans ; Probability theory ; Radiation ; Reflectance ; Satellite imagery ; Satellite observation ; Satellites ; Scattering ; Sciences of the Universe ; Spaceborne remote sensing ; Spectra ; thin cloud</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-08, Vol.122 (15), p.8153-8172</ispartof><rights>2017. The Authors.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3795-7182b1fd41a8649e80da3bf62a226ee58b0832737e8a536a160b162a1d96eae43</citedby><cites>FETCH-LOGICAL-c3795-7182b1fd41a8649e80da3bf62a226ee58b0832737e8a536a160b162a1d96eae43</cites><orcidid>0000-0003-2321-731X ; 0000-0001-5898-1137 ; 0000-0003-3469-6563 ; 0000-0002-5031-0256 ; 0000-0003-2340-8394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JD026707$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JD026707$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02354407$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hye‐Won</creatorcontrib><creatorcontrib>Yeom, Jong‐Min</creatorcontrib><creatorcontrib>Shin, Daegeun</creatorcontrib><creatorcontrib>Choi, Sungwon</creatorcontrib><creatorcontrib>Han, Kyung‐Soo</creatorcontrib><creatorcontrib>Roujean, Jean‐Louis</creatorcontrib><title>An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea</title><title>Journal of geophysical research. Atmospheres</title><description>In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model‐based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle‐dependent geostationary sensor geometry. For quantitative validation, Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35). Key Points Thin cloud detection algorithm over land area was suggested with geostationary ocean color satellite imagery Background reflectance of the surface underneath the cloud is simulated with bidirectional reflectance distribution function model Agreement between CALIPSO and new cloud detection algorithm was over 94% when detecting thin cloud (altostratus and cirrus) during study period</description><subject>Algorithms</subject><subject>Altostratus clouds</subject><subject>Bidirectional reflectance</subject><subject>BRDF model</subject><subject>CALIPSO</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>Case studies</subject><subject>Cirrus clouds</subject><subject>Cloud detection</subject><subject>Clouds</subject><subject>Color imagery</subject><subject>Computer simulation</subject><subject>Continental interfaces, environment</subject><subject>Data processing</subject><subject>Detection</subject><subject>Distribution</subject><subject>Geophysics</subject><subject>GOCI</subject><subject>Ice</subject><subject>Image processing</subject><subject>Imagery</subject><subject>Imaging techniques</subject><subject>Lidar</subject><subject>Masking</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>MODIS</subject><subject>Ocean color</subject><subject>Ocean colour</subject><subject>Oceans</subject><subject>Probability theory</subject><subject>Radiation</subject><subject>Reflectance</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Scattering</subject><subject>Sciences of the Universe</subject><subject>Spaceborne remote sensing</subject><subject>Spectra</subject><subject>thin cloud</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcluE0EQhkcIJKIkNx6gJC5EwqGXWblZDjgOliyxSNxGNdM1dofxtNMLaG48As_HkSehnUFRTvSlu6u-_69SVZK84OySMybeCMaLmysm8oIVT5ITwfNqVlZV_vThXXx9npw7d8viKZlMs_Qk-T0fAJ0j5_Y0eDAd-J0eoO1NUKDIU-u1GaAZAQ-HftTDFhqttJ3i2IOlro8fHFoCpZ23ugn3ki4Mk3ZvFPV_fv5q0JGCBttvW2vCoMAF22GUPbYI7lhiScZ5vK9gR9i0hAMsTG8srPa4JQuvlpvF6uItzKGNruB8UCN0Mf_JBL-DD8YSniXPOuwdnf-7T5Mv7999XlzP1pvlajFfz1pZVNms4KVoeKdSjmWeVlQyhbLpcoFC5ERZ2bBSikIWVGImc-Q5a3jMclXlhJTK0-Ri8t1hXx-s3seea4O6vp6v62OMCZmlKSu-88i-nNiDNXeBnK9vTbBxjq7mleSxH8GOjq8nqrXGuTieB1vO6uOy68fLjric8B-6p_G_bH2z_HiVySrL5F_a-67n</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Kim, Hye‐Won</creator><creator>Yeom, Jong‐Min</creator><creator>Shin, Daegeun</creator><creator>Choi, Sungwon</creator><creator>Han, Kyung‐Soo</creator><creator>Roujean, Jean‐Louis</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2321-731X</orcidid><orcidid>https://orcid.org/0000-0001-5898-1137</orcidid><orcidid>https://orcid.org/0000-0003-3469-6563</orcidid><orcidid>https://orcid.org/0000-0002-5031-0256</orcidid><orcidid>https://orcid.org/0000-0003-2340-8394</orcidid></search><sort><creationdate>20170816</creationdate><title>An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea</title><author>Kim, Hye‐Won ; Yeom, Jong‐Min ; Shin, Daegeun ; Choi, Sungwon ; Han, Kyung‐Soo ; Roujean, Jean‐Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3795-7182b1fd41a8649e80da3bf62a226ee58b0832737e8a536a160b162a1d96eae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Altostratus clouds</topic><topic>Bidirectional reflectance</topic><topic>BRDF model</topic><topic>CALIPSO</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>Case studies</topic><topic>Cirrus clouds</topic><topic>Cloud detection</topic><topic>Clouds</topic><topic>Color imagery</topic><topic>Computer simulation</topic><topic>Continental interfaces, environment</topic><topic>Data processing</topic><topic>Detection</topic><topic>Distribution</topic><topic>Geophysics</topic><topic>GOCI</topic><topic>Ice</topic><topic>Image processing</topic><topic>Imagery</topic><topic>Imaging techniques</topic><topic>Lidar</topic><topic>Masking</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>MODIS</topic><topic>Ocean color</topic><topic>Ocean colour</topic><topic>Oceans</topic><topic>Probability theory</topic><topic>Radiation</topic><topic>Reflectance</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Scattering</topic><topic>Sciences of the Universe</topic><topic>Spaceborne remote sensing</topic><topic>Spectra</topic><topic>thin cloud</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hye‐Won</creatorcontrib><creatorcontrib>Yeom, Jong‐Min</creatorcontrib><creatorcontrib>Shin, Daegeun</creatorcontrib><creatorcontrib>Choi, Sungwon</creatorcontrib><creatorcontrib>Han, Kyung‐Soo</creatorcontrib><creatorcontrib>Roujean, Jean‐Louis</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hye‐Won</au><au>Yeom, Jong‐Min</au><au>Shin, Daegeun</au><au>Choi, Sungwon</au><au>Han, Kyung‐Soo</au><au>Roujean, Jean‐Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-08-16</date><risdate>2017</risdate><volume>122</volume><issue>15</issue><spage>8153</spage><epage>8172</epage><pages>8153-8172</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model‐based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle‐dependent geostationary sensor geometry. For quantitative validation, Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35). Key Points Thin cloud detection algorithm over land area was suggested with geostationary ocean color satellite imagery Background reflectance of the surface underneath the cloud is simulated with bidirectional reflectance distribution function model Agreement between CALIPSO and new cloud detection algorithm was over 94% when detecting thin cloud (altostratus and cirrus) during study period</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JD026707</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2321-731X</orcidid><orcidid>https://orcid.org/0000-0001-5898-1137</orcidid><orcidid>https://orcid.org/0000-0003-3469-6563</orcidid><orcidid>https://orcid.org/0000-0002-5031-0256</orcidid><orcidid>https://orcid.org/0000-0003-2340-8394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-08, Vol.122 (15), p.8153-8172
issn 2169-897X
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_02354407v1
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Algorithms
Altostratus clouds
Bidirectional reflectance
BRDF model
CALIPSO
CALIPSO (Pathfinder satellite)
Case studies
Cirrus clouds
Cloud detection
Clouds
Color imagery
Computer simulation
Continental interfaces, environment
Data processing
Detection
Distribution
Geophysics
GOCI
Ice
Image processing
Imagery
Imaging techniques
Lidar
Masking
Mathematical models
Meteorological satellites
MODIS
Ocean color
Ocean colour
Oceans
Probability theory
Radiation
Reflectance
Satellite imagery
Satellite observation
Satellites
Scattering
Sciences of the Universe
Spaceborne remote sensing
Spectra
thin cloud
title An assessment of thin cloud detection by applying bidirectional reflectance distribution function model‐based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20assessment%20of%20thin%20cloud%20detection%20by%20applying%20bidirectional%20reflectance%20distribution%20function%20model%E2%80%90based%20background%20surface%20reflectance%20using%20Geostationary%20Ocean%20Color%20Imager%20(GOCI):%20A%20case%20study%20for%20South%20Korea&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Kim,%20Hye%E2%80%90Won&rft.date=2017-08-16&rft.volume=122&rft.issue=15&rft.spage=8153&rft.epage=8172&rft.pages=8153-8172&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2017JD026707&rft_dat=%3Cproquest_hal_p%3E1931795204%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931795204&rft_id=info:pmid/&rfr_iscdi=true