Incorporating microclimate into species distribution models

Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 2019-07, Vol.42 (7), p.1267-1279
Hauptverfasser: Lembrechts, Jonas J., Nijs, Ivan, Lenoir, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 7
container_start_page 1267
container_title Ecography (Copenhagen)
container_volume 42
creator Lembrechts, Jonas J.
Nijs, Ivan
Lenoir, Jonathan
description Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions.
doi_str_mv 10.1111/ecog.03947
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02352622v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249646395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3716-e94291f16b4f50c899768b9c32fbf43f821f21954460e07c0edbfe6d1fb401d53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcXP0HBk0Lne0maNngaY7rBYBc9hzZNZkbXzKRT9u1tnXj0XR48fvz5vx8htwgT7OfRaL-ZAJM8PyMjFAApZEV-TkYgQaR5JuGSXMW4BUAqRTEiT8tW-7D3oexcu0l2TgevG7crO5O4tvNJ3BvtTExqF7vgqkPnfJvsfG2aeE0ubNlEc_O7x-Ttef46W6Sr9ctyNl2lmuUoUiM5lWhRVNxmoAspc1FUUjNqK8uZLShaijLjXICBXIOpK2tEjbbigHXGxuT-lPteNmof-nLhqHzp1GK6UsMNKMuooPQTe_buxO6D_ziY2KmtP4S2r6co5VJwweSQ-HCi-m9jDMb-xSKoQaQaRKofkT2MJ_jLNeb4D6nms_ULUiYE-wazW3Rr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249646395</pqid></control><display><type>article</type><title>Incorporating microclimate into species distribution models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lembrechts, Jonas J. ; Nijs, Ivan ; Lenoir, Jonathan</creator><creatorcontrib>Lembrechts, Jonas J. ; Nijs, Ivan ; Lenoir, Jonathan</creatorcontrib><description>Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.03947</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Air temperature ; Airborne lasers ; Anthropogenic factors ; Bioclimatology ; Biodiversity ; Biodiversity and Ecology ; Biological evolution ; Climate change ; Climate effects ; Digital Elevation Models ; Ecological effects ; Ecology, environment ; Environmental Sciences ; Habitats ; Life Sciences ; Microclimate ; Mountains ; remote sensing ; Species ; species distribution modelling ; Weather stations</subject><ispartof>Ecography (Copenhagen), 2019-07, Vol.42 (7), p.1267-1279</ispartof><rights>2019 The Authors</rights><rights>Ecography © 2019 Nordic Society Oikos</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3716-e94291f16b4f50c899768b9c32fbf43f821f21954460e07c0edbfe6d1fb401d53</citedby><cites>FETCH-LOGICAL-c3716-e94291f16b4f50c899768b9c32fbf43f821f21954460e07c0edbfe6d1fb401d53</cites><orcidid>0000-0003-0638-9582 ; 0000-0002-1933-0750 ; 0000-0003-3111-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fecog.03947$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fecog.03947$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02352622$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><title>Incorporating microclimate into species distribution models</title><title>Ecography (Copenhagen)</title><description>Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions.</description><subject>Air temperature</subject><subject>Airborne lasers</subject><subject>Anthropogenic factors</subject><subject>Bioclimatology</subject><subject>Biodiversity</subject><subject>Biodiversity and Ecology</subject><subject>Biological evolution</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Digital Elevation Models</subject><subject>Ecological effects</subject><subject>Ecology, environment</subject><subject>Environmental Sciences</subject><subject>Habitats</subject><subject>Life Sciences</subject><subject>Microclimate</subject><subject>Mountains</subject><subject>remote sensing</subject><subject>Species</subject><subject>species distribution modelling</subject><subject>Weather stations</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcXP0HBk0Lne0maNngaY7rBYBc9hzZNZkbXzKRT9u1tnXj0XR48fvz5vx8htwgT7OfRaL-ZAJM8PyMjFAApZEV-TkYgQaR5JuGSXMW4BUAqRTEiT8tW-7D3oexcu0l2TgevG7crO5O4tvNJ3BvtTExqF7vgqkPnfJvsfG2aeE0ubNlEc_O7x-Ttef46W6Sr9ctyNl2lmuUoUiM5lWhRVNxmoAspc1FUUjNqK8uZLShaijLjXICBXIOpK2tEjbbigHXGxuT-lPteNmof-nLhqHzp1GK6UsMNKMuooPQTe_buxO6D_ziY2KmtP4S2r6co5VJwweSQ-HCi-m9jDMb-xSKoQaQaRKofkT2MJ_jLNeb4D6nms_ULUiYE-wazW3Rr</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Lembrechts, Jonas J.</creator><creator>Nijs, Ivan</creator><creator>Lenoir, Jonathan</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid></search><sort><creationdate>201907</creationdate><title>Incorporating microclimate into species distribution models</title><author>Lembrechts, Jonas J. ; Nijs, Ivan ; Lenoir, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3716-e94291f16b4f50c899768b9c32fbf43f821f21954460e07c0edbfe6d1fb401d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air temperature</topic><topic>Airborne lasers</topic><topic>Anthropogenic factors</topic><topic>Bioclimatology</topic><topic>Biodiversity</topic><topic>Biodiversity and Ecology</topic><topic>Biological evolution</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Digital Elevation Models</topic><topic>Ecological effects</topic><topic>Ecology, environment</topic><topic>Environmental Sciences</topic><topic>Habitats</topic><topic>Life Sciences</topic><topic>Microclimate</topic><topic>Mountains</topic><topic>remote sensing</topic><topic>Species</topic><topic>species distribution modelling</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lembrechts, Jonas J.</au><au>Nijs, Ivan</au><au>Lenoir, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating microclimate into species distribution models</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>42</volume><issue>7</issue><spage>1267</spage><epage>1279</epage><pages>1267-1279</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Species distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on free‐air or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarse‐grained free‐air conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriately‐placed sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the long‐term records of free‐air conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.03947</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2019-07, Vol.42 (7), p.1267-1279
issn 0906-7590
1600-0587
language eng
recordid cdi_hal_primary_oai_HAL_hal_02352622v1
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Air temperature
Airborne lasers
Anthropogenic factors
Bioclimatology
Biodiversity
Biodiversity and Ecology
Biological evolution
Climate change
Climate effects
Digital Elevation Models
Ecological effects
Ecology, environment
Environmental Sciences
Habitats
Life Sciences
Microclimate
Mountains
remote sensing
Species
species distribution modelling
Weather stations
title Incorporating microclimate into species distribution models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20microclimate%20into%20species%20distribution%20models&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Lembrechts,%20Jonas%20J.&rft.date=2019-07&rft.volume=42&rft.issue=7&rft.spage=1267&rft.epage=1279&rft.pages=1267-1279&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.03947&rft_dat=%3Cproquest_hal_p%3E2249646395%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249646395&rft_id=info:pmid/&rfr_iscdi=true