Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon

The development of catalysts for electrochemical reduction of carbon dioxide (eCO2RR) with high activity and selectivity remains a grand challenge to render the technology useable. As promising candidates, metal–nitrogen–carbon (MNC) catalysts with metal atoms present as atomically dispersed metal–N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-11, Vol.9 (11), p.10426-10439
Hauptverfasser: Li, Jingkun, Pršlja, Paulina, Shinagawa, Tatsuya, Martín Fernández, Antonio José, Krumeich, Frank, Artyushkova, Kateryna, Atanassov, Plamen, Zitolo, Andrea, Zhou, Yecheng, García-Muelas, Rodrigo, López, Núria, Pérez-Ramírez, Javier, Jaouen, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10439
container_issue 11
container_start_page 10426
container_title ACS catalysis
container_volume 9
creator Li, Jingkun
Pršlja, Paulina
Shinagawa, Tatsuya
Martín Fernández, Antonio José
Krumeich, Frank
Artyushkova, Kateryna
Atanassov, Plamen
Zitolo, Andrea
Zhou, Yecheng
García-Muelas, Rodrigo
López, Núria
Pérez-Ramírez, Javier
Jaouen, Frédéric
description The development of catalysts for electrochemical reduction of carbon dioxide (eCO2RR) with high activity and selectivity remains a grand challenge to render the technology useable. As promising candidates, metal–nitrogen–carbon (MNC) catalysts with metal atoms present as atomically dispersed metal–N x moieties (MN x , M = Mn, Fe, Co, Ni, and Cu) were investigated as model catalysts. The distinct activity for CO formation observed along the series of catalysts is attributed to the nature of the transition metal in MN x moieties because of otherwise similar composition, structure, and morphology of the carbon matrix. We identify a volcano trend between their activity toward CO formation and the nature of the transition metal in MN x sites, with Fe and/or Co at the top of the volcano, depending on the electrochemical potential. Regarding selectivity, FeNC, NiNC, and MnNC had Faradaic efficiency for CO >80%. To correctly model the active sites in operando conditions, experimental operando X-ray absorption near edge structure spectroscopy was performed to follow changes in the metal oxidation state with electrochemical potential. Co and Mn did not change the oxidation state with potential, whereas Fe and Ni were partially reduced and Cu largely reduced to Cu(0). Computational models then led to the identification of M2+N4–H2O as the most active centers in FeNC and CoNC, whereas Ni1+N4 was predicted as the most active one in NiNC at the considered potentials of −0.5 and −0.6 V versus the reversible hydrogen electrode. The experimental activity and selectivity could be rationalized from our density functional theory results, identifying in particular the difference between the binding energies for CO2*– and H* as a descriptor of selectivity toward CO. This in-depth understanding of the activity and selectivity based on the speciation of the metals for eCO2RR over atomically dispersed MN x sites provides guidelines for the rational design of MNC catalysts toward eCO2RR for their application in high-performance devices.
doi_str_mv 10.1021/acscatal.9b02594
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02352302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a452087074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a334t-7e4f96d5429fe4825922e805ffc82665b6ed9ee708a79c89e4193b1f8cdb5a083</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBor173Ktg6n4mm2NIqxWqBa1el81molvSbEnSSv69W1vBubxh5r3HzEPohpIJJYzeG9tZ05t6khaEyVScoRGjUkZScHn-r79E465bk1BCxiohI_T94WtrGo9XLTQldg2e1WD71v_6Db2zOF8y_ArlzvbONzgLsHf9gP0eWpz1fuOsqesBT123hbaDEj9DkOI310OHg-LFBbtPaKKp34ZtbtrCN9foojJ1B-MTXqH3h9kqn0eL5eNTni0iw7noowRElcalFCytQKjwG2OgiKwqq1gcyyKGMgVIiDJJalUKgqa8oJWyZSENUfwK3R59v0ytt63bmHbQ3jg9zxb6MCOMS8YJ29PAvTtyQ5x67XdtEy7TlOhDxvovY33KmP8AYGZxng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon</title><source>ACS Publications</source><creator>Li, Jingkun ; Pršlja, Paulina ; Shinagawa, Tatsuya ; Martín Fernández, Antonio José ; Krumeich, Frank ; Artyushkova, Kateryna ; Atanassov, Plamen ; Zitolo, Andrea ; Zhou, Yecheng ; García-Muelas, Rodrigo ; López, Núria ; Pérez-Ramírez, Javier ; Jaouen, Frédéric</creator><creatorcontrib>Li, Jingkun ; Pršlja, Paulina ; Shinagawa, Tatsuya ; Martín Fernández, Antonio José ; Krumeich, Frank ; Artyushkova, Kateryna ; Atanassov, Plamen ; Zitolo, Andrea ; Zhou, Yecheng ; García-Muelas, Rodrigo ; López, Núria ; Pérez-Ramírez, Javier ; Jaouen, Frédéric</creatorcontrib><description>The development of catalysts for electrochemical reduction of carbon dioxide (eCO2RR) with high activity and selectivity remains a grand challenge to render the technology useable. As promising candidates, metal–nitrogen–carbon (MNC) catalysts with metal atoms present as atomically dispersed metal–N x moieties (MN x , M = Mn, Fe, Co, Ni, and Cu) were investigated as model catalysts. The distinct activity for CO formation observed along the series of catalysts is attributed to the nature of the transition metal in MN x moieties because of otherwise similar composition, structure, and morphology of the carbon matrix. We identify a volcano trend between their activity toward CO formation and the nature of the transition metal in MN x sites, with Fe and/or Co at the top of the volcano, depending on the electrochemical potential. Regarding selectivity, FeNC, NiNC, and MnNC had Faradaic efficiency for CO &gt;80%. To correctly model the active sites in operando conditions, experimental operando X-ray absorption near edge structure spectroscopy was performed to follow changes in the metal oxidation state with electrochemical potential. Co and Mn did not change the oxidation state with potential, whereas Fe and Ni were partially reduced and Cu largely reduced to Cu(0). Computational models then led to the identification of M2+N4–H2O as the most active centers in FeNC and CoNC, whereas Ni1+N4 was predicted as the most active one in NiNC at the considered potentials of −0.5 and −0.6 V versus the reversible hydrogen electrode. The experimental activity and selectivity could be rationalized from our density functional theory results, identifying in particular the difference between the binding energies for CO2*– and H* as a descriptor of selectivity toward CO. This in-depth understanding of the activity and selectivity based on the speciation of the metals for eCO2RR over atomically dispersed MN x sites provides guidelines for the rational design of MNC catalysts toward eCO2RR for their application in high-performance devices.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b02594</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences</subject><ispartof>ACS catalysis, 2019-11, Vol.9 (11), p.10426-10439</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8679-9612 ; 0000-0002-2219-5027 ; 0000-0002-5240-7342 ; 0000-0002-5805-7355 ; 0000-0001-5625-1536 ; 0000-0002-2187-6699 ; 0000-0003-2996-472X ; 0000-0002-2611-0422 ; 0000-0001-9150-5941 ; 0000-0001-9836-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.9b02594$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.9b02594$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02352302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Pršlja, Paulina</creatorcontrib><creatorcontrib>Shinagawa, Tatsuya</creatorcontrib><creatorcontrib>Martín Fernández, Antonio José</creatorcontrib><creatorcontrib>Krumeich, Frank</creatorcontrib><creatorcontrib>Artyushkova, Kateryna</creatorcontrib><creatorcontrib>Atanassov, Plamen</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Zhou, Yecheng</creatorcontrib><creatorcontrib>García-Muelas, Rodrigo</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez-Ramírez, Javier</creatorcontrib><creatorcontrib>Jaouen, Frédéric</creatorcontrib><title>Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The development of catalysts for electrochemical reduction of carbon dioxide (eCO2RR) with high activity and selectivity remains a grand challenge to render the technology useable. As promising candidates, metal–nitrogen–carbon (MNC) catalysts with metal atoms present as atomically dispersed metal–N x moieties (MN x , M = Mn, Fe, Co, Ni, and Cu) were investigated as model catalysts. The distinct activity for CO formation observed along the series of catalysts is attributed to the nature of the transition metal in MN x moieties because of otherwise similar composition, structure, and morphology of the carbon matrix. We identify a volcano trend between their activity toward CO formation and the nature of the transition metal in MN x sites, with Fe and/or Co at the top of the volcano, depending on the electrochemical potential. Regarding selectivity, FeNC, NiNC, and MnNC had Faradaic efficiency for CO &gt;80%. To correctly model the active sites in operando conditions, experimental operando X-ray absorption near edge structure spectroscopy was performed to follow changes in the metal oxidation state with electrochemical potential. Co and Mn did not change the oxidation state with potential, whereas Fe and Ni were partially reduced and Cu largely reduced to Cu(0). Computational models then led to the identification of M2+N4–H2O as the most active centers in FeNC and CoNC, whereas Ni1+N4 was predicted as the most active one in NiNC at the considered potentials of −0.5 and −0.6 V versus the reversible hydrogen electrode. The experimental activity and selectivity could be rationalized from our density functional theory results, identifying in particular the difference between the binding energies for CO2*– and H* as a descriptor of selectivity toward CO. This in-depth understanding of the activity and selectivity based on the speciation of the metals for eCO2RR over atomically dispersed MN x sites provides guidelines for the rational design of MNC catalysts toward eCO2RR for their application in high-performance devices.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNUE1Lw0AQXUTBor173Ktg6n4mm2NIqxWqBa1el81molvSbEnSSv69W1vBubxh5r3HzEPohpIJJYzeG9tZ05t6khaEyVScoRGjUkZScHn-r79E465bk1BCxiohI_T94WtrGo9XLTQldg2e1WD71v_6Db2zOF8y_ArlzvbONzgLsHf9gP0eWpz1fuOsqesBT123hbaDEj9DkOI310OHg-LFBbtPaKKp34ZtbtrCN9foojJ1B-MTXqH3h9kqn0eL5eNTni0iw7noowRElcalFCytQKjwG2OgiKwqq1gcyyKGMgVIiDJJalUKgqa8oJWyZSENUfwK3R59v0ytt63bmHbQ3jg9zxb6MCOMS8YJ29PAvTtyQ5x67XdtEy7TlOhDxvovY33KmP8AYGZxng</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Jingkun</creator><creator>Pršlja, Paulina</creator><creator>Shinagawa, Tatsuya</creator><creator>Martín Fernández, Antonio José</creator><creator>Krumeich, Frank</creator><creator>Artyushkova, Kateryna</creator><creator>Atanassov, Plamen</creator><creator>Zitolo, Andrea</creator><creator>Zhou, Yecheng</creator><creator>García-Muelas, Rodrigo</creator><creator>López, Núria</creator><creator>Pérez-Ramírez, Javier</creator><creator>Jaouen, Frédéric</creator><general>American Chemical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8679-9612</orcidid><orcidid>https://orcid.org/0000-0002-2219-5027</orcidid><orcidid>https://orcid.org/0000-0002-5240-7342</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0001-5625-1536</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0003-2996-472X</orcidid><orcidid>https://orcid.org/0000-0002-2611-0422</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><orcidid>https://orcid.org/0000-0001-9836-3261</orcidid></search><sort><creationdate>20191101</creationdate><title>Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon</title><author>Li, Jingkun ; Pršlja, Paulina ; Shinagawa, Tatsuya ; Martín Fernández, Antonio José ; Krumeich, Frank ; Artyushkova, Kateryna ; Atanassov, Plamen ; Zitolo, Andrea ; Zhou, Yecheng ; García-Muelas, Rodrigo ; López, Núria ; Pérez-Ramírez, Javier ; Jaouen, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a334t-7e4f96d5429fe4825922e805ffc82665b6ed9ee708a79c89e4193b1f8cdb5a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Pršlja, Paulina</creatorcontrib><creatorcontrib>Shinagawa, Tatsuya</creatorcontrib><creatorcontrib>Martín Fernández, Antonio José</creatorcontrib><creatorcontrib>Krumeich, Frank</creatorcontrib><creatorcontrib>Artyushkova, Kateryna</creatorcontrib><creatorcontrib>Atanassov, Plamen</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Zhou, Yecheng</creatorcontrib><creatorcontrib>García-Muelas, Rodrigo</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez-Ramírez, Javier</creatorcontrib><creatorcontrib>Jaouen, Frédéric</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingkun</au><au>Pršlja, Paulina</au><au>Shinagawa, Tatsuya</au><au>Martín Fernández, Antonio José</au><au>Krumeich, Frank</au><au>Artyushkova, Kateryna</au><au>Atanassov, Plamen</au><au>Zitolo, Andrea</au><au>Zhou, Yecheng</au><au>García-Muelas, Rodrigo</au><au>López, Núria</au><au>Pérez-Ramírez, Javier</au><au>Jaouen, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>10426</spage><epage>10439</epage><pages>10426-10439</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The development of catalysts for electrochemical reduction of carbon dioxide (eCO2RR) with high activity and selectivity remains a grand challenge to render the technology useable. As promising candidates, metal–nitrogen–carbon (MNC) catalysts with metal atoms present as atomically dispersed metal–N x moieties (MN x , M = Mn, Fe, Co, Ni, and Cu) were investigated as model catalysts. The distinct activity for CO formation observed along the series of catalysts is attributed to the nature of the transition metal in MN x moieties because of otherwise similar composition, structure, and morphology of the carbon matrix. We identify a volcano trend between their activity toward CO formation and the nature of the transition metal in MN x sites, with Fe and/or Co at the top of the volcano, depending on the electrochemical potential. Regarding selectivity, FeNC, NiNC, and MnNC had Faradaic efficiency for CO &gt;80%. To correctly model the active sites in operando conditions, experimental operando X-ray absorption near edge structure spectroscopy was performed to follow changes in the metal oxidation state with electrochemical potential. Co and Mn did not change the oxidation state with potential, whereas Fe and Ni were partially reduced and Cu largely reduced to Cu(0). Computational models then led to the identification of M2+N4–H2O as the most active centers in FeNC and CoNC, whereas Ni1+N4 was predicted as the most active one in NiNC at the considered potentials of −0.5 and −0.6 V versus the reversible hydrogen electrode. The experimental activity and selectivity could be rationalized from our density functional theory results, identifying in particular the difference between the binding energies for CO2*– and H* as a descriptor of selectivity toward CO. This in-depth understanding of the activity and selectivity based on the speciation of the metals for eCO2RR over atomically dispersed MN x sites provides guidelines for the rational design of MNC catalysts toward eCO2RR for their application in high-performance devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b02594</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8679-9612</orcidid><orcidid>https://orcid.org/0000-0002-2219-5027</orcidid><orcidid>https://orcid.org/0000-0002-5240-7342</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0001-5625-1536</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0003-2996-472X</orcidid><orcidid>https://orcid.org/0000-0002-2611-0422</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><orcidid>https://orcid.org/0000-0001-9836-3261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2019-11, Vol.9 (11), p.10426-10439
issn 2155-5435
2155-5435
language eng
recordid cdi_hal_primary_oai_HAL_hal_02352302v1
source ACS Publications
subjects Catalysis
Chemical Sciences
title Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volcano%20Trend%20in%20Electrocatalytic%20CO2%20Reduction%20Activity%20over%20Atomically%20Dispersed%20Metal%20Sites%20on%20Nitrogen-Doped%20Carbon&rft.jtitle=ACS%20catalysis&rft.au=Li,%20Jingkun&rft.date=2019-11-01&rft.volume=9&rft.issue=11&rft.spage=10426&rft.epage=10439&rft.pages=10426-10439&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b02594&rft_dat=%3Cacs_hal_p%3Ea452087074%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true