A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes
The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of f...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2017-08, Vol.23 (48), p.11598-11610 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11610 |
---|---|
container_issue | 48 |
container_start_page | 11598 |
container_title | Chemistry : a European journal |
container_volume | 23 |
creator | Aeschbacher, Thomas Zierke, Mirko Smieško, Martin Collot, Mayeul Mallet, Jean‐Maurice Ernst, Beat Allain, Frédéric H.‐T. Schubert, Mario |
description | The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture.
Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events. |
doi_str_mv | 10.1002/chem.201701866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350860v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914580651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</originalsourceid><addsrcrecordid>eNqF0cFr2zAUBnAxNta023XHIeilPTh7z7Jk6xhC2pRmDNaNHYUsP68uspVadkf--zmkS6GXnQTip49PfIx9QpgjQPrF3VM7TwFzwEKpN2yGMsVE5Eq-ZTPQWZ4oKfQJO43xAQC0EuI9O0kLJbMc5YzdLvgdudBVtt_xu6Ef3TD21vOVp5a6gTcdt_xXUxH_brvfxEPNr0YX4s7bgSp-7Xcu0LYZwpbiB_autj7Sx-fzjP28Wv1YrpPNt-ub5WKTOImgklqXRA5kCaLUmUQHWDvtlHAk0sqmaUX11K60tUKFdaFFDrkss9xiJaUlccYuD7n31ptt37RTdxNsY9aLjdnfQSokFAqecLIXB7vtw-NIcTBtEx15bzsKYzSoMZMFKLmn56_oQxj7bvrJpATqQhWoJjU_KNeHGHuqjw0QzH4Ss5_EHCeZHnx-jh3Llqoj_7fBBPQB_Gk87f4TZ5br1deX8L8a0JX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931986816</pqid></control><display><type>article</type><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</creator><creatorcontrib>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</creatorcontrib><description>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture.
Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201701866</identifier><identifier>PMID: 28654715</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amphibians ; Antigens ; Bacteria ; Carbohydrate Conformation ; Carbohydrate Sequence ; Carbohydrates ; Chemical Sciences ; Chemistry ; Databases, Chemical ; Epitopes - chemistry ; Fucose - chemistry ; Fuels ; Glycosylation ; hydrogen bond ; Hydrogen Bonding ; Hydrogen bonds ; Invertebrates ; Magnetic Resonance Spectroscopy ; Marine invertebrates ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oligosaccharides ; Oligosaccharides - chemistry ; Protein interaction ; Protein structure ; Rigidity ; Secondary structure ; solution conformation</subject><ispartof>Chemistry : a European journal, 2017-08, Vol.23 (48), p.11598-11610</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</citedby><cites>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</cites><orcidid>0000-0001-7063-9254 ; 0000-0003-2758-2680 ; 0000-0002-8673-1730 ; 0000-0003-0278-4091 ; 0000-0001-8570-9542 ; 0000-0001-5787-2297 ; 0000-0002-4838-5822 ; 0000-0002-2131-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201701866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201701866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28654715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350860$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aeschbacher, Thomas</creatorcontrib><creatorcontrib>Zierke, Mirko</creatorcontrib><creatorcontrib>Smieško, Martin</creatorcontrib><creatorcontrib>Collot, Mayeul</creatorcontrib><creatorcontrib>Mallet, Jean‐Maurice</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Allain, Frédéric H.‐T.</creatorcontrib><creatorcontrib>Schubert, Mario</creatorcontrib><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture.
Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</description><subject>Amphibians</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Carbohydrates</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Databases, Chemical</subject><subject>Epitopes - chemistry</subject><subject>Fucose - chemistry</subject><subject>Fuels</subject><subject>Glycosylation</subject><subject>hydrogen bond</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Invertebrates</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Marine invertebrates</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oligosaccharides</subject><subject>Oligosaccharides - chemistry</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Rigidity</subject><subject>Secondary structure</subject><subject>solution conformation</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFr2zAUBnAxNta023XHIeilPTh7z7Jk6xhC2pRmDNaNHYUsP68uspVadkf--zmkS6GXnQTip49PfIx9QpgjQPrF3VM7TwFzwEKpN2yGMsVE5Eq-ZTPQWZ4oKfQJO43xAQC0EuI9O0kLJbMc5YzdLvgdudBVtt_xu6Ef3TD21vOVp5a6gTcdt_xXUxH_brvfxEPNr0YX4s7bgSp-7Xcu0LYZwpbiB_autj7Sx-fzjP28Wv1YrpPNt-ub5WKTOImgklqXRA5kCaLUmUQHWDvtlHAk0sqmaUX11K60tUKFdaFFDrkss9xiJaUlccYuD7n31ptt37RTdxNsY9aLjdnfQSokFAqecLIXB7vtw-NIcTBtEx15bzsKYzSoMZMFKLmn56_oQxj7bvrJpATqQhWoJjU_KNeHGHuqjw0QzH4Ss5_EHCeZHnx-jh3Llqoj_7fBBPQB_Gk87f4TZ5br1deX8L8a0JX0</recordid><startdate>20170825</startdate><enddate>20170825</enddate><creator>Aeschbacher, Thomas</creator><creator>Zierke, Mirko</creator><creator>Smieško, Martin</creator><creator>Collot, Mayeul</creator><creator>Mallet, Jean‐Maurice</creator><creator>Ernst, Beat</creator><creator>Allain, Frédéric H.‐T.</creator><creator>Schubert, Mario</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7063-9254</orcidid><orcidid>https://orcid.org/0000-0003-2758-2680</orcidid><orcidid>https://orcid.org/0000-0002-8673-1730</orcidid><orcidid>https://orcid.org/0000-0003-0278-4091</orcidid><orcidid>https://orcid.org/0000-0001-8570-9542</orcidid><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0002-4838-5822</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></search><sort><creationdate>20170825</creationdate><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><author>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amphibians</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Carbohydrates</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Databases, Chemical</topic><topic>Epitopes - chemistry</topic><topic>Fucose - chemistry</topic><topic>Fuels</topic><topic>Glycosylation</topic><topic>hydrogen bond</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Invertebrates</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Marine invertebrates</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oligosaccharides</topic><topic>Oligosaccharides - chemistry</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Rigidity</topic><topic>Secondary structure</topic><topic>solution conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aeschbacher, Thomas</creatorcontrib><creatorcontrib>Zierke, Mirko</creatorcontrib><creatorcontrib>Smieško, Martin</creatorcontrib><creatorcontrib>Collot, Mayeul</creatorcontrib><creatorcontrib>Mallet, Jean‐Maurice</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Allain, Frédéric H.‐T.</creatorcontrib><creatorcontrib>Schubert, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aeschbacher, Thomas</au><au>Zierke, Mirko</au><au>Smieško, Martin</au><au>Collot, Mayeul</au><au>Mallet, Jean‐Maurice</au><au>Ernst, Beat</au><au>Allain, Frédéric H.‐T.</au><au>Schubert, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-08-25</date><risdate>2017</risdate><volume>23</volume><issue>48</issue><spage>11598</spage><epage>11610</epage><pages>11598-11610</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture.
Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28654715</pmid><doi>10.1002/chem.201701866</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7063-9254</orcidid><orcidid>https://orcid.org/0000-0003-2758-2680</orcidid><orcidid>https://orcid.org/0000-0002-8673-1730</orcidid><orcidid>https://orcid.org/0000-0003-0278-4091</orcidid><orcidid>https://orcid.org/0000-0001-8570-9542</orcidid><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0002-4838-5822</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2017-08, Vol.23 (48), p.11598-11610 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02350860v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amphibians Antigens Bacteria Carbohydrate Conformation Carbohydrate Sequence Carbohydrates Chemical Sciences Chemistry Databases, Chemical Epitopes - chemistry Fucose - chemistry Fuels Glycosylation hydrogen bond Hydrogen Bonding Hydrogen bonds Invertebrates Magnetic Resonance Spectroscopy Marine invertebrates NMR NMR spectroscopy Nuclear magnetic resonance Oligosaccharides Oligosaccharides - chemistry Protein interaction Protein structure Rigidity Secondary structure solution conformation |
title | A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Secondary%20Structural%20Element%20in%20a%20Wide%20Range%20of%20Fucosylated%20Glycoepitopes&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Aeschbacher,%20Thomas&rft.date=2017-08-25&rft.volume=23&rft.issue=48&rft.spage=11598&rft.epage=11610&rft.pages=11598-11610&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201701866&rft_dat=%3Cproquest_hal_p%3E1914580651%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931986816&rft_id=info:pmid/28654715&rfr_iscdi=true |