A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes

The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2017-08, Vol.23 (48), p.11598-11610
Hauptverfasser: Aeschbacher, Thomas, Zierke, Mirko, Smieško, Martin, Collot, Mayeul, Mallet, Jean‐Maurice, Ernst, Beat, Allain, Frédéric H.‐T., Schubert, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11610
container_issue 48
container_start_page 11598
container_title Chemistry : a European journal
container_volume 23
creator Aeschbacher, Thomas
Zierke, Mirko
Smieško, Martin
Collot, Mayeul
Mallet, Jean‐Maurice
Ernst, Beat
Allain, Frédéric H.‐T.
Schubert, Mario
description The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture. Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.
doi_str_mv 10.1002/chem.201701866
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350860v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914580651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</originalsourceid><addsrcrecordid>eNqF0cFr2zAUBnAxNta023XHIeilPTh7z7Jk6xhC2pRmDNaNHYUsP68uspVadkf--zmkS6GXnQTip49PfIx9QpgjQPrF3VM7TwFzwEKpN2yGMsVE5Eq-ZTPQWZ4oKfQJO43xAQC0EuI9O0kLJbMc5YzdLvgdudBVtt_xu6Ef3TD21vOVp5a6gTcdt_xXUxH_brvfxEPNr0YX4s7bgSp-7Xcu0LYZwpbiB_autj7Sx-fzjP28Wv1YrpPNt-ub5WKTOImgklqXRA5kCaLUmUQHWDvtlHAk0sqmaUX11K60tUKFdaFFDrkss9xiJaUlccYuD7n31ptt37RTdxNsY9aLjdnfQSokFAqecLIXB7vtw-NIcTBtEx15bzsKYzSoMZMFKLmn56_oQxj7bvrJpATqQhWoJjU_KNeHGHuqjw0QzH4Ss5_EHCeZHnx-jh3Llqoj_7fBBPQB_Gk87f4TZ5br1deX8L8a0JX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931986816</pqid></control><display><type>article</type><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</creator><creatorcontrib>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</creatorcontrib><description>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture. Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201701866</identifier><identifier>PMID: 28654715</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amphibians ; Antigens ; Bacteria ; Carbohydrate Conformation ; Carbohydrate Sequence ; Carbohydrates ; Chemical Sciences ; Chemistry ; Databases, Chemical ; Epitopes - chemistry ; Fucose - chemistry ; Fuels ; Glycosylation ; hydrogen bond ; Hydrogen Bonding ; Hydrogen bonds ; Invertebrates ; Magnetic Resonance Spectroscopy ; Marine invertebrates ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oligosaccharides ; Oligosaccharides - chemistry ; Protein interaction ; Protein structure ; Rigidity ; Secondary structure ; solution conformation</subject><ispartof>Chemistry : a European journal, 2017-08, Vol.23 (48), p.11598-11610</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</citedby><cites>FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</cites><orcidid>0000-0001-7063-9254 ; 0000-0003-2758-2680 ; 0000-0002-8673-1730 ; 0000-0003-0278-4091 ; 0000-0001-8570-9542 ; 0000-0001-5787-2297 ; 0000-0002-4838-5822 ; 0000-0002-2131-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201701866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201701866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28654715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350860$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aeschbacher, Thomas</creatorcontrib><creatorcontrib>Zierke, Mirko</creatorcontrib><creatorcontrib>Smieško, Martin</creatorcontrib><creatorcontrib>Collot, Mayeul</creatorcontrib><creatorcontrib>Mallet, Jean‐Maurice</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Allain, Frédéric H.‐T.</creatorcontrib><creatorcontrib>Schubert, Mario</creatorcontrib><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture. Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</description><subject>Amphibians</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Carbohydrates</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Databases, Chemical</subject><subject>Epitopes - chemistry</subject><subject>Fucose - chemistry</subject><subject>Fuels</subject><subject>Glycosylation</subject><subject>hydrogen bond</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Invertebrates</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Marine invertebrates</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oligosaccharides</subject><subject>Oligosaccharides - chemistry</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Rigidity</subject><subject>Secondary structure</subject><subject>solution conformation</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFr2zAUBnAxNta023XHIeilPTh7z7Jk6xhC2pRmDNaNHYUsP68uspVadkf--zmkS6GXnQTip49PfIx9QpgjQPrF3VM7TwFzwEKpN2yGMsVE5Eq-ZTPQWZ4oKfQJO43xAQC0EuI9O0kLJbMc5YzdLvgdudBVtt_xu6Ef3TD21vOVp5a6gTcdt_xXUxH_brvfxEPNr0YX4s7bgSp-7Xcu0LYZwpbiB_autj7Sx-fzjP28Wv1YrpPNt-ub5WKTOImgklqXRA5kCaLUmUQHWDvtlHAk0sqmaUX11K60tUKFdaFFDrkss9xiJaUlccYuD7n31ptt37RTdxNsY9aLjdnfQSokFAqecLIXB7vtw-NIcTBtEx15bzsKYzSoMZMFKLmn56_oQxj7bvrJpATqQhWoJjU_KNeHGHuqjw0QzH4Ss5_EHCeZHnx-jh3Llqoj_7fBBPQB_Gk87f4TZ5br1deX8L8a0JX0</recordid><startdate>20170825</startdate><enddate>20170825</enddate><creator>Aeschbacher, Thomas</creator><creator>Zierke, Mirko</creator><creator>Smieško, Martin</creator><creator>Collot, Mayeul</creator><creator>Mallet, Jean‐Maurice</creator><creator>Ernst, Beat</creator><creator>Allain, Frédéric H.‐T.</creator><creator>Schubert, Mario</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7063-9254</orcidid><orcidid>https://orcid.org/0000-0003-2758-2680</orcidid><orcidid>https://orcid.org/0000-0002-8673-1730</orcidid><orcidid>https://orcid.org/0000-0003-0278-4091</orcidid><orcidid>https://orcid.org/0000-0001-8570-9542</orcidid><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0002-4838-5822</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></search><sort><creationdate>20170825</creationdate><title>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</title><author>Aeschbacher, Thomas ; Zierke, Mirko ; Smieško, Martin ; Collot, Mayeul ; Mallet, Jean‐Maurice ; Ernst, Beat ; Allain, Frédéric H.‐T. ; Schubert, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-f9beec05b03b9451c01fc9c63ce32da22def547baf6161f8937075b47a1d55ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amphibians</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Carbohydrates</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Databases, Chemical</topic><topic>Epitopes - chemistry</topic><topic>Fucose - chemistry</topic><topic>Fuels</topic><topic>Glycosylation</topic><topic>hydrogen bond</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Invertebrates</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Marine invertebrates</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oligosaccharides</topic><topic>Oligosaccharides - chemistry</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Rigidity</topic><topic>Secondary structure</topic><topic>solution conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aeschbacher, Thomas</creatorcontrib><creatorcontrib>Zierke, Mirko</creatorcontrib><creatorcontrib>Smieško, Martin</creatorcontrib><creatorcontrib>Collot, Mayeul</creatorcontrib><creatorcontrib>Mallet, Jean‐Maurice</creatorcontrib><creatorcontrib>Ernst, Beat</creatorcontrib><creatorcontrib>Allain, Frédéric H.‐T.</creatorcontrib><creatorcontrib>Schubert, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aeschbacher, Thomas</au><au>Zierke, Mirko</au><au>Smieško, Martin</au><au>Collot, Mayeul</au><au>Mallet, Jean‐Maurice</au><au>Ernst, Beat</au><au>Allain, Frédéric H.‐T.</au><au>Schubert, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-08-25</date><risdate>2017</risdate><volume>23</volume><issue>48</issue><spage>11598</spage><epage>11610</epage><pages>11598-11610</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The increasing understanding of the essential role of carbohydrates in development, and in a wide range of diseases fuels a rapidly growing interest in the basic principles governing carbohydrate‐protein interactions. A still heavily debated issue regarding the recognition process is the degree of flexibility or rigidity of oligosaccharides. Combining NMR structure determination based on extensive experimental data with DFT and database searches, we have identified a set of trisaccharide motifs with a similar conformation that is characterized by a non‐conventional C−H⋅⋅⋅O hydrogen bond. These motifs are present in numerous classes of oligosaccharides, found in everything from bacteria to mammals, including Lewis blood group antigens but also unusual motifs from amphibians and marine invertebrates. The set of trisaccharide motifs can be summarized with the consensus motifs X‐β1,4‐[Fucα1,3]‐Y and X‐β1,3‐[Fucα1,4]‐Y—a secondary structure we name [3,4]F‐branch. The wide spectrum of possible modifications of this scaffold points toward a large variety of glycoepitopes, which nature generated using the same underlying architecture. Rigid sugars: NMR structure determination revealed a common 3D scaffold in 25 % of all fucose‐containing carbohydrates. The central feature is a C−H⋅⋅⋅O hydrogen bond, indicated by a characteristic chemical shift. This work suggests that fucosylation of certain glycans leads to a rigidification in addition to generating glyco‐epitopes for recognition events.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28654715</pmid><doi>10.1002/chem.201701866</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7063-9254</orcidid><orcidid>https://orcid.org/0000-0003-2758-2680</orcidid><orcidid>https://orcid.org/0000-0002-8673-1730</orcidid><orcidid>https://orcid.org/0000-0003-0278-4091</orcidid><orcidid>https://orcid.org/0000-0001-8570-9542</orcidid><orcidid>https://orcid.org/0000-0001-5787-2297</orcidid><orcidid>https://orcid.org/0000-0002-4838-5822</orcidid><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2017-08, Vol.23 (48), p.11598-11610
issn 0947-6539
1521-3765
language eng
recordid cdi_hal_primary_oai_HAL_hal_02350860v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amphibians
Antigens
Bacteria
Carbohydrate Conformation
Carbohydrate Sequence
Carbohydrates
Chemical Sciences
Chemistry
Databases, Chemical
Epitopes - chemistry
Fucose - chemistry
Fuels
Glycosylation
hydrogen bond
Hydrogen Bonding
Hydrogen bonds
Invertebrates
Magnetic Resonance Spectroscopy
Marine invertebrates
NMR
NMR spectroscopy
Nuclear magnetic resonance
Oligosaccharides
Oligosaccharides - chemistry
Protein interaction
Protein structure
Rigidity
Secondary structure
solution conformation
title A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Secondary%20Structural%20Element%20in%20a%20Wide%20Range%20of%20Fucosylated%20Glycoepitopes&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Aeschbacher,%20Thomas&rft.date=2017-08-25&rft.volume=23&rft.issue=48&rft.spage=11598&rft.epage=11610&rft.pages=11598-11610&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201701866&rft_dat=%3Cproquest_hal_p%3E1914580651%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931986816&rft_id=info:pmid/28654715&rfr_iscdi=true