Alternating vigilance states: new insights regarding neuronal networks and mechanisms
Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow‐wave...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2009-05, Vol.29 (9), p.1741-1753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 |
---|---|
container_issue | 9 |
container_start_page | 1741 |
container_title | The European journal of neuroscience |
container_volume | 29 |
creator | Fort, P. Bassetti, C. L. Luppi, P-H. |
description | Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow‐wave sleep (SWS, also known as non‐REM sleep) identified by the presence of delta waves. Here, we review the most recent data on the mechanisms responsible for the genesis of SWS and PS. Based on these data, we propose an updated integrated model of the mechanisms responsible for the sleep–wake cycle. This model introduces for the first time the notion that the entrance and exit of PS are induced by different mechanisms. We hypothesize that the entrance from SWS to PS is due to the intrinsic activation of PS‐active GABAergic neurons localized in the posterior hypothalamus (co‐containing melanin‐concentrating hormone), ventrolateral periaqueductal gray and the dorsal paragigantocellular reticular nucleus. In contrast, the exit from PS is induced by the inhibition of these neurons by a PS‐gating system composed of GABAergic neurons localized in the ventrolateral periaqueductal gray and just ventral to it, and waking systems such as the pontine and medullary noradrenergic neurons and the hypothalamic hypocretin neurons. Finally, we review human neurological disorders of the network responsible for sleep and propose hypotheses on the mechanisms responsible for REM behavior disorder and narcolepsy. |
doi_str_mv | 10.1111/j.1460-9568.2009.06722.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350774v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67291975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5362-ce9123cdf32c2e96d17a20c6b69b9a51ec50f18294b7a6e0ff7ecb9a6e4d05243</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqHwF9CekDjsYnv9sUbikFYlpYqCUFu1N8vxziZO96PYmyb993i7UTiCLzPyPO94xi9CCcEZiefLJiNM4FRxUWQUY5VhISnN9q_Q5Fh4jSZY8TwtiLg_Qe9C2GCMC8H4W3RCFJM5pWqCbqd1D741vWtXyZNbudq0FpLQmx7C16SFXeLa4FbrPiQeVsaXA9jC1netqWPS7zr_EBLTlkkDdm1aF5rwHr2pTB3gwyGeotvvFzfnl-n85-zH-XSeWp4LmlpQhOa2rHJqKShREmkotmIp1FIZTsByXJGCKraURgCuKgk2VgSwEnPK8lP0eey7NrV-9K4x_ll3xunL6VwPd5jmHEvJnkhkP43so-9-byH0unHBQh0Xhm4bdPxBRZTk_wQp5opIhiNYjKD1XQgequMIBOvBJ73Rgx16sEMPPukXn_Q-Sj8e3tguGyj_Cg_GRODbCOxcDc__3VhfXC2GLOrTUe9CD_uj3viHuGguub5bzPTZgv26vinu9Sz_A_7nsQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20591740</pqid></control><display><type>article</type><title>Alternating vigilance states: new insights regarding neuronal networks and mechanisms</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Fort, P. ; Bassetti, C. L. ; Luppi, P-H.</creator><creatorcontrib>Fort, P. ; Bassetti, C. L. ; Luppi, P-H.</creatorcontrib><description>Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow‐wave sleep (SWS, also known as non‐REM sleep) identified by the presence of delta waves. Here, we review the most recent data on the mechanisms responsible for the genesis of SWS and PS. Based on these data, we propose an updated integrated model of the mechanisms responsible for the sleep–wake cycle. This model introduces for the first time the notion that the entrance and exit of PS are induced by different mechanisms. We hypothesize that the entrance from SWS to PS is due to the intrinsic activation of PS‐active GABAergic neurons localized in the posterior hypothalamus (co‐containing melanin‐concentrating hormone), ventrolateral periaqueductal gray and the dorsal paragigantocellular reticular nucleus. In contrast, the exit from PS is induced by the inhibition of these neurons by a PS‐gating system composed of GABAergic neurons localized in the ventrolateral periaqueductal gray and just ventral to it, and waking systems such as the pontine and medullary noradrenergic neurons and the hypothalamic hypocretin neurons. Finally, we review human neurological disorders of the network responsible for sleep and propose hypotheses on the mechanisms responsible for REM behavior disorder and narcolepsy.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2009.06722.x</identifier><identifier>PMID: 19473229</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - metabolism ; Animals ; Biogenic Monoamines - metabolism ; Brain - physiology ; Brain - physiopathology ; GABA ; gamma-Aminobutyric Acid - metabolism ; glutamate ; Glutamic Acid - metabolism ; Humans ; Hypothalamic Hormones - metabolism ; Life Sciences ; MCH ; Melanins - metabolism ; Models, Neurological ; Narcolepsy - physiopathology ; Neural Pathways - physiology ; Neural Pathways - physiopathology ; Neurons - physiology ; Neurons and Cognition ; Pituitary Hormones - metabolism ; REM sleep ; REM Sleep Behavior Disorder - physiopathology ; Sleep - physiology ; SWS sleep ; VLPO ; Wakefulness - physiology</subject><ispartof>The European journal of neuroscience, 2009-05, Vol.29 (9), p.1741-1753</ispartof><rights>The Authors (2009). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5362-ce9123cdf32c2e96d17a20c6b69b9a51ec50f18294b7a6e0ff7ecb9a6e4d05243</citedby><cites>FETCH-LOGICAL-c5362-ce9123cdf32c2e96d17a20c6b69b9a51ec50f18294b7a6e0ff7ecb9a6e4d05243</cites><orcidid>0000-0003-1211-8631 ; 0000-0002-0503-423X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2009.06722.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2009.06722.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19473229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350774$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fort, P.</creatorcontrib><creatorcontrib>Bassetti, C. L.</creatorcontrib><creatorcontrib>Luppi, P-H.</creatorcontrib><title>Alternating vigilance states: new insights regarding neuronal networks and mechanisms</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow‐wave sleep (SWS, also known as non‐REM sleep) identified by the presence of delta waves. Here, we review the most recent data on the mechanisms responsible for the genesis of SWS and PS. Based on these data, we propose an updated integrated model of the mechanisms responsible for the sleep–wake cycle. This model introduces for the first time the notion that the entrance and exit of PS are induced by different mechanisms. We hypothesize that the entrance from SWS to PS is due to the intrinsic activation of PS‐active GABAergic neurons localized in the posterior hypothalamus (co‐containing melanin‐concentrating hormone), ventrolateral periaqueductal gray and the dorsal paragigantocellular reticular nucleus. In contrast, the exit from PS is induced by the inhibition of these neurons by a PS‐gating system composed of GABAergic neurons localized in the ventrolateral periaqueductal gray and just ventral to it, and waking systems such as the pontine and medullary noradrenergic neurons and the hypothalamic hypocretin neurons. Finally, we review human neurological disorders of the network responsible for sleep and propose hypotheses on the mechanisms responsible for REM behavior disorder and narcolepsy.</description><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>Biogenic Monoamines - metabolism</subject><subject>Brain - physiology</subject><subject>Brain - physiopathology</subject><subject>GABA</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Hypothalamic Hormones - metabolism</subject><subject>Life Sciences</subject><subject>MCH</subject><subject>Melanins - metabolism</subject><subject>Models, Neurological</subject><subject>Narcolepsy - physiopathology</subject><subject>Neural Pathways - physiology</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Pituitary Hormones - metabolism</subject><subject>REM sleep</subject><subject>REM Sleep Behavior Disorder - physiopathology</subject><subject>Sleep - physiology</subject><subject>SWS sleep</subject><subject>VLPO</subject><subject>Wakefulness - physiology</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEQhi0EoqHwF9CekDjsYnv9sUbikFYlpYqCUFu1N8vxziZO96PYmyb993i7UTiCLzPyPO94xi9CCcEZiefLJiNM4FRxUWQUY5VhISnN9q_Q5Fh4jSZY8TwtiLg_Qe9C2GCMC8H4W3RCFJM5pWqCbqd1D741vWtXyZNbudq0FpLQmx7C16SFXeLa4FbrPiQeVsaXA9jC1netqWPS7zr_EBLTlkkDdm1aF5rwHr2pTB3gwyGeotvvFzfnl-n85-zH-XSeWp4LmlpQhOa2rHJqKShREmkotmIp1FIZTsByXJGCKraURgCuKgk2VgSwEnPK8lP0eey7NrV-9K4x_ll3xunL6VwPd5jmHEvJnkhkP43so-9-byH0unHBQh0Xhm4bdPxBRZTk_wQp5opIhiNYjKD1XQgequMIBOvBJ73Rgx16sEMPPukXn_Q-Sj8e3tguGyj_Cg_GRODbCOxcDc__3VhfXC2GLOrTUe9CD_uj3viHuGguub5bzPTZgv26vinu9Sz_A_7nsQc</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Fort, P.</creator><creator>Bassetti, C. L.</creator><creator>Luppi, P-H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1211-8631</orcidid><orcidid>https://orcid.org/0000-0002-0503-423X</orcidid></search><sort><creationdate>200905</creationdate><title>Alternating vigilance states: new insights regarding neuronal networks and mechanisms</title><author>Fort, P. ; Bassetti, C. L. ; Luppi, P-H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5362-ce9123cdf32c2e96d17a20c6b69b9a51ec50f18294b7a6e0ff7ecb9a6e4d05243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>Biogenic Monoamines - metabolism</topic><topic>Brain - physiology</topic><topic>Brain - physiopathology</topic><topic>GABA</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Hypothalamic Hormones - metabolism</topic><topic>Life Sciences</topic><topic>MCH</topic><topic>Melanins - metabolism</topic><topic>Models, Neurological</topic><topic>Narcolepsy - physiopathology</topic><topic>Neural Pathways - physiology</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Pituitary Hormones - metabolism</topic><topic>REM sleep</topic><topic>REM Sleep Behavior Disorder - physiopathology</topic><topic>Sleep - physiology</topic><topic>SWS sleep</topic><topic>VLPO</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fort, P.</creatorcontrib><creatorcontrib>Bassetti, C. L.</creatorcontrib><creatorcontrib>Luppi, P-H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fort, P.</au><au>Bassetti, C. L.</au><au>Luppi, P-H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating vigilance states: new insights regarding neuronal networks and mechanisms</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2009-05</date><risdate>2009</risdate><volume>29</volume><issue>9</issue><spage>1741</spage><epage>1753</epage><pages>1741-1753</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Since the discovery of rapid eye movement (REM) sleep (also known as paradoxical sleep; PS), it is accepted that sleep is an active process. PS is characterized by EEG rhythmic activity resembling that of waking with a disappearance of muscle tone and the occurrence of REMs, in contrast to slow‐wave sleep (SWS, also known as non‐REM sleep) identified by the presence of delta waves. Here, we review the most recent data on the mechanisms responsible for the genesis of SWS and PS. Based on these data, we propose an updated integrated model of the mechanisms responsible for the sleep–wake cycle. This model introduces for the first time the notion that the entrance and exit of PS are induced by different mechanisms. We hypothesize that the entrance from SWS to PS is due to the intrinsic activation of PS‐active GABAergic neurons localized in the posterior hypothalamus (co‐containing melanin‐concentrating hormone), ventrolateral periaqueductal gray and the dorsal paragigantocellular reticular nucleus. In contrast, the exit from PS is induced by the inhibition of these neurons by a PS‐gating system composed of GABAergic neurons localized in the ventrolateral periaqueductal gray and just ventral to it, and waking systems such as the pontine and medullary noradrenergic neurons and the hypothalamic hypocretin neurons. Finally, we review human neurological disorders of the network responsible for sleep and propose hypotheses on the mechanisms responsible for REM behavior disorder and narcolepsy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19473229</pmid><doi>10.1111/j.1460-9568.2009.06722.x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1211-8631</orcidid><orcidid>https://orcid.org/0000-0002-0503-423X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2009-05, Vol.29 (9), p.1741-1753 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02350774v1 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Acetylcholine - metabolism Animals Biogenic Monoamines - metabolism Brain - physiology Brain - physiopathology GABA gamma-Aminobutyric Acid - metabolism glutamate Glutamic Acid - metabolism Humans Hypothalamic Hormones - metabolism Life Sciences MCH Melanins - metabolism Models, Neurological Narcolepsy - physiopathology Neural Pathways - physiology Neural Pathways - physiopathology Neurons - physiology Neurons and Cognition Pituitary Hormones - metabolism REM sleep REM Sleep Behavior Disorder - physiopathology Sleep - physiology SWS sleep VLPO Wakefulness - physiology |
title | Alternating vigilance states: new insights regarding neuronal networks and mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20vigilance%20states:%20new%20insights%20regarding%20neuronal%20networks%20and%20mechanisms&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Fort,%20P.&rft.date=2009-05&rft.volume=29&rft.issue=9&rft.spage=1741&rft.epage=1753&rft.pages=1741-1753&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2009.06722.x&rft_dat=%3Cproquest_hal_p%3E67291975%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20591740&rft_id=info:pmid/19473229&rfr_iscdi=true |