Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits
Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-05, Vol.98 (4), p.801-816.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816.e7 |
---|---|
container_issue | 4 |
container_start_page | 801 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 98 |
creator | Cavaccini, Anna Gritti, Marta Giorgi, Andrea Locarno, Andrea Heck, Nicolas Migliarini, Sara Bertero, Alice Mereu, Maddalena Margiani, Giulia Trusel, Massimo Catelani, Tiziano Marotta, Roberto De Luca, Maria Antonietta Caboche, Jocelyne Gozzi, Alessandro Pasqualetti, Massimo Tonini, Raffaella |
description | Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.
•5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function
Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum. |
doi_str_mv | 10.1016/j.neuron.2018.04.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350720v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318302927</els_id><sourcerecordid>2039812643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agit22_gciA17aw4wvmZ-5CGVRW1hQWEuPIcm8WbPMJmOSKex_b7ZTe_Dg6YXweS_hfQl5T6GgQJtP-8Li7J0tGNCugKoA6F6RFQXe5hXl_DVZQcebvGFteUbOQ9gD0Krm9C05Y7yFpu7KFXnYonfRWfQ7o7Ot2Vk5GrvL1s5G78aQ3dlpjvl2Qm2GkzhaOcV0-DHKkKqJx0zGbBu9kVGO2dp4PZsYLsmbQY4B3z3XC3L_9cvP9W2--f7tbn2zyXVdNjEvB2QMhl5xhrRknSz7vla85nzQA1NKc-ixo52UumZ9TVWleiqbRitQ2CV-Qa6Xub_kKCZvDtIfhZNG3N5sxOkOWFlDy-CRJnu12Mm73zOGKA4maBxHadHNQTAoWcsr1tSJfvyH7t3s026eFO8oa6oyqWpR2rsQPA4vP6AgTiGJvVhCEqeQBFQihZTaPjwPn9UB-5emv6kk8HkBmDb3aNCLoA1ajb3xqKPonfn_C38AQgulRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039812643</pqid></control><display><type>article</type><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</creator><creatorcontrib>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</creatorcontrib><description>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.
•5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function
Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.04.008</identifier><identifier>PMID: 29706583</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavioral plasticity ; Brain research ; Calcium Signaling - drug effects ; Calcium Signaling - genetics ; Calcium signalling ; Caudate-putamen ; Channel gating ; Corpus Striatum - cytology ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Cortex ; Dopamine ; Excitatory Postsynaptic Potentials - drug effects ; Firing pattern ; Glutamatergic transmission ; Indoles - pharmacology ; Informatics ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Life Sciences ; Long-term depression ; Long-Term Synaptic Depression ; Mice ; Mice, Transgenic ; Microscopy ; Neostriatum ; Neural Pathways ; Neural plasticity ; Neurobiology ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - genetics ; Neurons ; Neurons and Cognition ; Optogenetics ; Piperidines - pharmacology ; Propane - analogs & derivatives ; Propane - pharmacology ; Receptors, Serotonin, 5-HT4 - genetics ; Reinforcement ; Rodents ; Serotonin - metabolism ; Serotonin 5-HT4 Receptor Antagonists - pharmacology ; Serotonin S4 receptors ; Sulfonamides - pharmacology ; Synapses - drug effects ; Synapses - metabolism ; Synaptic depression ; Synaptic plasticity ; Thalamus ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - metabolism ; ■</subject><ispartof>Neuron (Cambridge, Mass.), 2018-05, Vol.98 (4), p.801-816.e7</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</citedby><cites>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</cites><orcidid>0000-0003-4742-7055 ; 0000-0002-5754-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2018.04.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29706583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350720$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavaccini, Anna</creatorcontrib><creatorcontrib>Gritti, Marta</creatorcontrib><creatorcontrib>Giorgi, Andrea</creatorcontrib><creatorcontrib>Locarno, Andrea</creatorcontrib><creatorcontrib>Heck, Nicolas</creatorcontrib><creatorcontrib>Migliarini, Sara</creatorcontrib><creatorcontrib>Bertero, Alice</creatorcontrib><creatorcontrib>Mereu, Maddalena</creatorcontrib><creatorcontrib>Margiani, Giulia</creatorcontrib><creatorcontrib>Trusel, Massimo</creatorcontrib><creatorcontrib>Catelani, Tiziano</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>De Luca, Maria Antonietta</creatorcontrib><creatorcontrib>Caboche, Jocelyne</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Pasqualetti, Massimo</creatorcontrib><creatorcontrib>Tonini, Raffaella</creatorcontrib><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.
•5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function
Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</description><subject>Animals</subject><subject>Behavioral plasticity</subject><subject>Brain research</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - genetics</subject><subject>Calcium signalling</subject><subject>Caudate-putamen</subject><subject>Channel gating</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Cortex</subject><subject>Dopamine</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Firing pattern</subject><subject>Glutamatergic transmission</subject><subject>Indoles - pharmacology</subject><subject>Informatics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Life Sciences</subject><subject>Long-term depression</subject><subject>Long-Term Synaptic Depression</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Neostriatum</subject><subject>Neural Pathways</subject><subject>Neural plasticity</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Optogenetics</subject><subject>Piperidines - pharmacology</subject><subject>Propane - analogs & derivatives</subject><subject>Propane - pharmacology</subject><subject>Receptors, Serotonin, 5-HT4 - genetics</subject><subject>Reinforcement</subject><subject>Rodents</subject><subject>Serotonin - metabolism</subject><subject>Serotonin 5-HT4 Receptor Antagonists - pharmacology</subject><subject>Serotonin S4 receptors</subject><subject>Sulfonamides - pharmacology</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Synaptic depression</subject><subject>Synaptic plasticity</subject><subject>Thalamus</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - metabolism</subject><subject>■</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agit22_gciA17aw4wvmZ-5CGVRW1hQWEuPIcm8WbPMJmOSKex_b7ZTe_Dg6YXweS_hfQl5T6GgQJtP-8Li7J0tGNCugKoA6F6RFQXe5hXl_DVZQcebvGFteUbOQ9gD0Krm9C05Y7yFpu7KFXnYonfRWfQ7o7Ot2Vk5GrvL1s5G78aQ3dlpjvl2Qm2GkzhaOcV0-DHKkKqJx0zGbBu9kVGO2dp4PZsYLsmbQY4B3z3XC3L_9cvP9W2--f7tbn2zyXVdNjEvB2QMhl5xhrRknSz7vla85nzQA1NKc-ixo52UumZ9TVWleiqbRitQ2CV-Qa6Xub_kKCZvDtIfhZNG3N5sxOkOWFlDy-CRJnu12Mm73zOGKA4maBxHadHNQTAoWcsr1tSJfvyH7t3s026eFO8oa6oyqWpR2rsQPA4vP6AgTiGJvVhCEqeQBFQihZTaPjwPn9UB-5emv6kk8HkBmDb3aNCLoA1ajb3xqKPonfn_C38AQgulRg</recordid><startdate>20180516</startdate><enddate>20180516</enddate><creator>Cavaccini, Anna</creator><creator>Gritti, Marta</creator><creator>Giorgi, Andrea</creator><creator>Locarno, Andrea</creator><creator>Heck, Nicolas</creator><creator>Migliarini, Sara</creator><creator>Bertero, Alice</creator><creator>Mereu, Maddalena</creator><creator>Margiani, Giulia</creator><creator>Trusel, Massimo</creator><creator>Catelani, Tiziano</creator><creator>Marotta, Roberto</creator><creator>De Luca, Maria Antonietta</creator><creator>Caboche, Jocelyne</creator><creator>Gozzi, Alessandro</creator><creator>Pasqualetti, Massimo</creator><creator>Tonini, Raffaella</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4742-7055</orcidid><orcidid>https://orcid.org/0000-0002-5754-8873</orcidid></search><sort><creationdate>20180516</creationdate><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><author>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Behavioral plasticity</topic><topic>Brain research</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - genetics</topic><topic>Calcium signalling</topic><topic>Caudate-putamen</topic><topic>Channel gating</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Cortex</topic><topic>Dopamine</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Firing pattern</topic><topic>Glutamatergic transmission</topic><topic>Indoles - pharmacology</topic><topic>Informatics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Life Sciences</topic><topic>Long-term depression</topic><topic>Long-Term Synaptic Depression</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Neostriatum</topic><topic>Neural Pathways</topic><topic>Neural plasticity</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Optogenetics</topic><topic>Piperidines - pharmacology</topic><topic>Propane - analogs & derivatives</topic><topic>Propane - pharmacology</topic><topic>Receptors, Serotonin, 5-HT4 - genetics</topic><topic>Reinforcement</topic><topic>Rodents</topic><topic>Serotonin - metabolism</topic><topic>Serotonin 5-HT4 Receptor Antagonists - pharmacology</topic><topic>Serotonin S4 receptors</topic><topic>Sulfonamides - pharmacology</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Synaptic depression</topic><topic>Synaptic plasticity</topic><topic>Thalamus</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - metabolism</topic><topic>■</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaccini, Anna</creatorcontrib><creatorcontrib>Gritti, Marta</creatorcontrib><creatorcontrib>Giorgi, Andrea</creatorcontrib><creatorcontrib>Locarno, Andrea</creatorcontrib><creatorcontrib>Heck, Nicolas</creatorcontrib><creatorcontrib>Migliarini, Sara</creatorcontrib><creatorcontrib>Bertero, Alice</creatorcontrib><creatorcontrib>Mereu, Maddalena</creatorcontrib><creatorcontrib>Margiani, Giulia</creatorcontrib><creatorcontrib>Trusel, Massimo</creatorcontrib><creatorcontrib>Catelani, Tiziano</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>De Luca, Maria Antonietta</creatorcontrib><creatorcontrib>Caboche, Jocelyne</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Pasqualetti, Massimo</creatorcontrib><creatorcontrib>Tonini, Raffaella</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaccini, Anna</au><au>Gritti, Marta</au><au>Giorgi, Andrea</au><au>Locarno, Andrea</au><au>Heck, Nicolas</au><au>Migliarini, Sara</au><au>Bertero, Alice</au><au>Mereu, Maddalena</au><au>Margiani, Giulia</au><au>Trusel, Massimo</au><au>Catelani, Tiziano</au><au>Marotta, Roberto</au><au>De Luca, Maria Antonietta</au><au>Caboche, Jocelyne</au><au>Gozzi, Alessandro</au><au>Pasqualetti, Massimo</au><au>Tonini, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-05-16</date><risdate>2018</risdate><volume>98</volume><issue>4</issue><spage>801</spage><epage>816.e7</epage><pages>801-816.e7</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.
•5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function
Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29706583</pmid><doi>10.1016/j.neuron.2018.04.008</doi><orcidid>https://orcid.org/0000-0003-4742-7055</orcidid><orcidid>https://orcid.org/0000-0002-5754-8873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-05, Vol.98 (4), p.801-816.e7 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02350720v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Behavioral plasticity Brain research Calcium Signaling - drug effects Calcium Signaling - genetics Calcium signalling Caudate-putamen Channel gating Corpus Striatum - cytology Corpus Striatum - drug effects Corpus Striatum - metabolism Cortex Dopamine Excitatory Postsynaptic Potentials - drug effects Firing pattern Glutamatergic transmission Indoles - pharmacology Informatics Large-Conductance Calcium-Activated Potassium Channels - metabolism Life Sciences Long-term depression Long-Term Synaptic Depression Mice Mice, Transgenic Microscopy Neostriatum Neural Pathways Neural plasticity Neurobiology Neuronal Plasticity - drug effects Neuronal Plasticity - genetics Neurons Neurons and Cognition Optogenetics Piperidines - pharmacology Propane - analogs & derivatives Propane - pharmacology Receptors, Serotonin, 5-HT4 - genetics Reinforcement Rodents Serotonin - metabolism Serotonin 5-HT4 Receptor Antagonists - pharmacology Serotonin S4 receptors Sulfonamides - pharmacology Synapses - drug effects Synapses - metabolism Synaptic depression Synaptic plasticity Thalamus Thalamus - cytology Thalamus - drug effects Thalamus - metabolism ■ |
title | Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serotonergic%20Signaling%20Controls%20Input-Specific%20Synaptic%20Plasticity%20at%20Striatal%20Circuits&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Cavaccini,%20Anna&rft.date=2018-05-16&rft.volume=98&rft.issue=4&rft.spage=801&rft.epage=816.e7&rft.pages=801-816.e7&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.04.008&rft_dat=%3Cproquest_hal_p%3E2039812643%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039812643&rft_id=info:pmid/29706583&rft_els_id=S0896627318302927&rfr_iscdi=true |