Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2018-05, Vol.98 (4), p.801-816.e7
Hauptverfasser: Cavaccini, Anna, Gritti, Marta, Giorgi, Andrea, Locarno, Andrea, Heck, Nicolas, Migliarini, Sara, Bertero, Alice, Mereu, Maddalena, Margiani, Giulia, Trusel, Massimo, Catelani, Tiziano, Marotta, Roberto, De Luca, Maria Antonietta, Caboche, Jocelyne, Gozzi, Alessandro, Pasqualetti, Massimo, Tonini, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816.e7
container_issue 4
container_start_page 801
container_title Neuron (Cambridge, Mass.)
container_volume 98
creator Cavaccini, Anna
Gritti, Marta
Giorgi, Andrea
Locarno, Andrea
Heck, Nicolas
Migliarini, Sara
Bertero, Alice
Mereu, Maddalena
Margiani, Giulia
Trusel, Massimo
Catelani, Tiziano
Marotta, Roberto
De Luca, Maria Antonietta
Caboche, Jocelyne
Gozzi, Alessandro
Pasqualetti, Massimo
Tonini, Raffaella
description Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. •5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.
doi_str_mv 10.1016/j.neuron.2018.04.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350720v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318302927</els_id><sourcerecordid>2039812643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agit22_gciA17aw4wvmZ-5CGVRW1hQWEuPIcm8WbPMJmOSKex_b7ZTe_Dg6YXweS_hfQl5T6GgQJtP-8Li7J0tGNCugKoA6F6RFQXe5hXl_DVZQcebvGFteUbOQ9gD0Krm9C05Y7yFpu7KFXnYonfRWfQ7o7Ot2Vk5GrvL1s5G78aQ3dlpjvl2Qm2GkzhaOcV0-DHKkKqJx0zGbBu9kVGO2dp4PZsYLsmbQY4B3z3XC3L_9cvP9W2--f7tbn2zyXVdNjEvB2QMhl5xhrRknSz7vla85nzQA1NKc-ixo52UumZ9TVWleiqbRitQ2CV-Qa6Xub_kKCZvDtIfhZNG3N5sxOkOWFlDy-CRJnu12Mm73zOGKA4maBxHadHNQTAoWcsr1tSJfvyH7t3s026eFO8oa6oyqWpR2rsQPA4vP6AgTiGJvVhCEqeQBFQihZTaPjwPn9UB-5emv6kk8HkBmDb3aNCLoA1ajb3xqKPonfn_C38AQgulRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039812643</pqid></control><display><type>article</type><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</creator><creatorcontrib>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</creatorcontrib><description>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. •5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.04.008</identifier><identifier>PMID: 29706583</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Behavioral plasticity ; Brain research ; Calcium Signaling - drug effects ; Calcium Signaling - genetics ; Calcium signalling ; Caudate-putamen ; Channel gating ; Corpus Striatum - cytology ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Cortex ; Dopamine ; Excitatory Postsynaptic Potentials - drug effects ; Firing pattern ; Glutamatergic transmission ; Indoles - pharmacology ; Informatics ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Life Sciences ; Long-term depression ; Long-Term Synaptic Depression ; Mice ; Mice, Transgenic ; Microscopy ; Neostriatum ; Neural Pathways ; Neural plasticity ; Neurobiology ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - genetics ; Neurons ; Neurons and Cognition ; Optogenetics ; Piperidines - pharmacology ; Propane - analogs &amp; derivatives ; Propane - pharmacology ; Receptors, Serotonin, 5-HT4 - genetics ; Reinforcement ; Rodents ; Serotonin - metabolism ; Serotonin 5-HT4 Receptor Antagonists - pharmacology ; Serotonin S4 receptors ; Sulfonamides - pharmacology ; Synapses - drug effects ; Synapses - metabolism ; Synaptic depression ; Synaptic plasticity ; Thalamus ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - metabolism ; ■</subject><ispartof>Neuron (Cambridge, Mass.), 2018-05, Vol.98 (4), p.801-816.e7</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</citedby><cites>FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</cites><orcidid>0000-0003-4742-7055 ; 0000-0002-5754-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2018.04.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29706583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02350720$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavaccini, Anna</creatorcontrib><creatorcontrib>Gritti, Marta</creatorcontrib><creatorcontrib>Giorgi, Andrea</creatorcontrib><creatorcontrib>Locarno, Andrea</creatorcontrib><creatorcontrib>Heck, Nicolas</creatorcontrib><creatorcontrib>Migliarini, Sara</creatorcontrib><creatorcontrib>Bertero, Alice</creatorcontrib><creatorcontrib>Mereu, Maddalena</creatorcontrib><creatorcontrib>Margiani, Giulia</creatorcontrib><creatorcontrib>Trusel, Massimo</creatorcontrib><creatorcontrib>Catelani, Tiziano</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>De Luca, Maria Antonietta</creatorcontrib><creatorcontrib>Caboche, Jocelyne</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Pasqualetti, Massimo</creatorcontrib><creatorcontrib>Tonini, Raffaella</creatorcontrib><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. •5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</description><subject>Animals</subject><subject>Behavioral plasticity</subject><subject>Brain research</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - genetics</subject><subject>Calcium signalling</subject><subject>Caudate-putamen</subject><subject>Channel gating</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Cortex</subject><subject>Dopamine</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Firing pattern</subject><subject>Glutamatergic transmission</subject><subject>Indoles - pharmacology</subject><subject>Informatics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Life Sciences</subject><subject>Long-term depression</subject><subject>Long-Term Synaptic Depression</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Neostriatum</subject><subject>Neural Pathways</subject><subject>Neural plasticity</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Optogenetics</subject><subject>Piperidines - pharmacology</subject><subject>Propane - analogs &amp; derivatives</subject><subject>Propane - pharmacology</subject><subject>Receptors, Serotonin, 5-HT4 - genetics</subject><subject>Reinforcement</subject><subject>Rodents</subject><subject>Serotonin - metabolism</subject><subject>Serotonin 5-HT4 Receptor Antagonists - pharmacology</subject><subject>Serotonin S4 receptors</subject><subject>Sulfonamides - pharmacology</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Synaptic depression</subject><subject>Synaptic plasticity</subject><subject>Thalamus</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - metabolism</subject><subject>■</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agit22_gciA17aw4wvmZ-5CGVRW1hQWEuPIcm8WbPMJmOSKex_b7ZTe_Dg6YXweS_hfQl5T6GgQJtP-8Li7J0tGNCugKoA6F6RFQXe5hXl_DVZQcebvGFteUbOQ9gD0Krm9C05Y7yFpu7KFXnYonfRWfQ7o7Ot2Vk5GrvL1s5G78aQ3dlpjvl2Qm2GkzhaOcV0-DHKkKqJx0zGbBu9kVGO2dp4PZsYLsmbQY4B3z3XC3L_9cvP9W2--f7tbn2zyXVdNjEvB2QMhl5xhrRknSz7vla85nzQA1NKc-ixo52UumZ9TVWleiqbRitQ2CV-Qa6Xub_kKCZvDtIfhZNG3N5sxOkOWFlDy-CRJnu12Mm73zOGKA4maBxHadHNQTAoWcsr1tSJfvyH7t3s026eFO8oa6oyqWpR2rsQPA4vP6AgTiGJvVhCEqeQBFQihZTaPjwPn9UB-5emv6kk8HkBmDb3aNCLoA1ajb3xqKPonfn_C38AQgulRg</recordid><startdate>20180516</startdate><enddate>20180516</enddate><creator>Cavaccini, Anna</creator><creator>Gritti, Marta</creator><creator>Giorgi, Andrea</creator><creator>Locarno, Andrea</creator><creator>Heck, Nicolas</creator><creator>Migliarini, Sara</creator><creator>Bertero, Alice</creator><creator>Mereu, Maddalena</creator><creator>Margiani, Giulia</creator><creator>Trusel, Massimo</creator><creator>Catelani, Tiziano</creator><creator>Marotta, Roberto</creator><creator>De Luca, Maria Antonietta</creator><creator>Caboche, Jocelyne</creator><creator>Gozzi, Alessandro</creator><creator>Pasqualetti, Massimo</creator><creator>Tonini, Raffaella</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4742-7055</orcidid><orcidid>https://orcid.org/0000-0002-5754-8873</orcidid></search><sort><creationdate>20180516</creationdate><title>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</title><author>Cavaccini, Anna ; Gritti, Marta ; Giorgi, Andrea ; Locarno, Andrea ; Heck, Nicolas ; Migliarini, Sara ; Bertero, Alice ; Mereu, Maddalena ; Margiani, Giulia ; Trusel, Massimo ; Catelani, Tiziano ; Marotta, Roberto ; De Luca, Maria Antonietta ; Caboche, Jocelyne ; Gozzi, Alessandro ; Pasqualetti, Massimo ; Tonini, Raffaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-3fe220fdb92e1328a3dd5b9599fcf2bbc90de818aac52d51b4bd1a66cb0be88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Behavioral plasticity</topic><topic>Brain research</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - genetics</topic><topic>Calcium signalling</topic><topic>Caudate-putamen</topic><topic>Channel gating</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Cortex</topic><topic>Dopamine</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Firing pattern</topic><topic>Glutamatergic transmission</topic><topic>Indoles - pharmacology</topic><topic>Informatics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Life Sciences</topic><topic>Long-term depression</topic><topic>Long-Term Synaptic Depression</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Neostriatum</topic><topic>Neural Pathways</topic><topic>Neural plasticity</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Optogenetics</topic><topic>Piperidines - pharmacology</topic><topic>Propane - analogs &amp; derivatives</topic><topic>Propane - pharmacology</topic><topic>Receptors, Serotonin, 5-HT4 - genetics</topic><topic>Reinforcement</topic><topic>Rodents</topic><topic>Serotonin - metabolism</topic><topic>Serotonin 5-HT4 Receptor Antagonists - pharmacology</topic><topic>Serotonin S4 receptors</topic><topic>Sulfonamides - pharmacology</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Synaptic depression</topic><topic>Synaptic plasticity</topic><topic>Thalamus</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - metabolism</topic><topic>■</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavaccini, Anna</creatorcontrib><creatorcontrib>Gritti, Marta</creatorcontrib><creatorcontrib>Giorgi, Andrea</creatorcontrib><creatorcontrib>Locarno, Andrea</creatorcontrib><creatorcontrib>Heck, Nicolas</creatorcontrib><creatorcontrib>Migliarini, Sara</creatorcontrib><creatorcontrib>Bertero, Alice</creatorcontrib><creatorcontrib>Mereu, Maddalena</creatorcontrib><creatorcontrib>Margiani, Giulia</creatorcontrib><creatorcontrib>Trusel, Massimo</creatorcontrib><creatorcontrib>Catelani, Tiziano</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>De Luca, Maria Antonietta</creatorcontrib><creatorcontrib>Caboche, Jocelyne</creatorcontrib><creatorcontrib>Gozzi, Alessandro</creatorcontrib><creatorcontrib>Pasqualetti, Massimo</creatorcontrib><creatorcontrib>Tonini, Raffaella</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavaccini, Anna</au><au>Gritti, Marta</au><au>Giorgi, Andrea</au><au>Locarno, Andrea</au><au>Heck, Nicolas</au><au>Migliarini, Sara</au><au>Bertero, Alice</au><au>Mereu, Maddalena</au><au>Margiani, Giulia</au><au>Trusel, Massimo</au><au>Catelani, Tiziano</au><au>Marotta, Roberto</au><au>De Luca, Maria Antonietta</au><au>Caboche, Jocelyne</au><au>Gozzi, Alessandro</au><au>Pasqualetti, Massimo</au><au>Tonini, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-05-16</date><risdate>2018</risdate><volume>98</volume><issue>4</issue><spage>801</spage><epage>816.e7</epage><pages>801-816.e7</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes. •5-HT signaling controls t-LTD in striatal projection neurons of the direct pathway•5-HT signaling shapes dendritic Ca2+ signals•5-HT-mediated regulation of t-LTD biases thalamostriatal synapses•Gating of t-LTD requires dampened activity of the 5-HT4R subtype, which modulates BK channel function Cavaccini and Gritti et al. combine chemogenetic and optogenetic approaches to show that serotonergic signaling provides a control mechanism of synaptic plasticity at thalamic inputs to the striatum.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29706583</pmid><doi>10.1016/j.neuron.2018.04.008</doi><orcidid>https://orcid.org/0000-0003-4742-7055</orcidid><orcidid>https://orcid.org/0000-0002-5754-8873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2018-05, Vol.98 (4), p.801-816.e7
issn 0896-6273
1097-4199
language eng
recordid cdi_hal_primary_oai_HAL_hal_02350720v1
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Behavioral plasticity
Brain research
Calcium Signaling - drug effects
Calcium Signaling - genetics
Calcium signalling
Caudate-putamen
Channel gating
Corpus Striatum - cytology
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Cortex
Dopamine
Excitatory Postsynaptic Potentials - drug effects
Firing pattern
Glutamatergic transmission
Indoles - pharmacology
Informatics
Large-Conductance Calcium-Activated Potassium Channels - metabolism
Life Sciences
Long-term depression
Long-Term Synaptic Depression
Mice
Mice, Transgenic
Microscopy
Neostriatum
Neural Pathways
Neural plasticity
Neurobiology
Neuronal Plasticity - drug effects
Neuronal Plasticity - genetics
Neurons
Neurons and Cognition
Optogenetics
Piperidines - pharmacology
Propane - analogs & derivatives
Propane - pharmacology
Receptors, Serotonin, 5-HT4 - genetics
Reinforcement
Rodents
Serotonin - metabolism
Serotonin 5-HT4 Receptor Antagonists - pharmacology
Serotonin S4 receptors
Sulfonamides - pharmacology
Synapses - drug effects
Synapses - metabolism
Synaptic depression
Synaptic plasticity
Thalamus
Thalamus - cytology
Thalamus - drug effects
Thalamus - metabolism

title Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serotonergic%20Signaling%20Controls%20Input-Specific%20Synaptic%20Plasticity%20at%20Striatal%20Circuits&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Cavaccini,%20Anna&rft.date=2018-05-16&rft.volume=98&rft.issue=4&rft.spage=801&rft.epage=816.e7&rft.pages=801-816.e7&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.04.008&rft_dat=%3Cproquest_hal_p%3E2039812643%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039812643&rft_id=info:pmid/29706583&rft_els_id=S0896627318302927&rfr_iscdi=true