Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy

In order to evaluate the optical efficiency of tip-based probes for future tip-enhanced optical spectroscopy applications, we developed an experimental setup based on the coupling of an achromatic inverted microscope equipped with a total internal reflection objective and an atomic force microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-11, Vol.123 (46), p.28392-28400
Hauptverfasser: Eschimèse, Damien, Hsia, Patrick, Vaurette, François, Deresmes, Dominique, De Bettignies, Philippe, Schreiber, Joachim, Chaigneau, Marc, Arscott, Steve, Lévêque, Gaëtan, Mélin, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28400
container_issue 46
container_start_page 28392
container_title Journal of physical chemistry. C
container_volume 123
creator Eschimèse, Damien
Hsia, Patrick
Vaurette, François
Deresmes, Dominique
De Bettignies, Philippe
Schreiber, Joachim
Chaigneau, Marc
Arscott, Steve
Lévêque, Gaëtan
Mélin, Thierry
description In order to evaluate the optical efficiency of tip-based probes for future tip-enhanced optical spectroscopy applications, we developed an experimental setup based on the coupling of an achromatic inverted microscope equipped with a total internal reflection objective and an atomic force microscopy (AFM) head. This spectroscopic tool has been validated using individual nanofabricated antennas (gold nanodisks/nanocones) on a glass substrate which act as nanoresonators based on localized surface plasmons. Spectrally tunable transverse electric and magnetic plasmonic resonances are identified and are in excellent agreement with numerical calculations performed as a function of the nanoantenna geometry and size. We investigated a series of state-of-the-art gold-coated AFM probes, which are commonly used for tip-enhanced (Raman spectroscopy) optical experiments. Their scattering spectrum consists of resonances depending on the tip sharpness or granularity superimposed on a broad emission spectrum due to a semi-infinite metal layer acting as a nonresonant antenna. From the comparison between the plasmonic response of both types of optical antennas, a new generation of probes for tip-enhanced optical spectroscopy is proposed in which single plasmonic nanoantennas are engineered at the apex of a nonmetallic AFM tip. As from numerical simulation results, such tips would ensure a spectral tunability as a function of the material, size, and geometry, together with expected high enhancement factors. Such features would allow the design of spectrally tunable surface-enhanced Raman spectroscopy substrates and should be a reliable and efficient alternative to tips commonly used in tip-enhanced optical spectroscopy experiments such as tip-enhanced Raman spectroscopy.
doi_str_mv 10.1021/acs.jpcc.9b09977
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02349635v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a284854041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-5632593f039d8e3346ec01321a8c9754afe1d667be8e909eec2d9ec466266da53</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdo69IpNhx4tTHqgJaqdBKlHO0cTaQKrUjOy0qJz4d9yFunPYxM6udIeSWswFnMX8A7QerVuuBKphSWXZGelyJOMqSND3_65Psklx5v2IsFYyLHvkZ23ULDrp6i3Rqtui7-iNM1lBb0UUDfm1NrenC2RZdV6OnBXZfiIYuNwaKBukrGGuLFerOUzAlfcEOmqb-xvIAtc4WQVVZR-dtV2to6FsbyM56bdvdNbmooPF4c6p98v70uBxPotn8eToezSIQSnRRKkWcKlExocohCpFI1MFAzGGoVZYmUCEvpcwKHKJiClHHpUKdSBlLWUIq-uTuePcTmrx19RrcLrdQ55PRLN_vWCwSJUW65YHLjlwdnvQOqz8BZ_k-7Tykne_Tzk9pB8n9UXJA7MaZYOZ_-i_EpYYh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy</title><source>American Chemical Society Journals</source><creator>Eschimèse, Damien ; Hsia, Patrick ; Vaurette, François ; Deresmes, Dominique ; De Bettignies, Philippe ; Schreiber, Joachim ; Chaigneau, Marc ; Arscott, Steve ; Lévêque, Gaëtan ; Mélin, Thierry</creator><creatorcontrib>Eschimèse, Damien ; Hsia, Patrick ; Vaurette, François ; Deresmes, Dominique ; De Bettignies, Philippe ; Schreiber, Joachim ; Chaigneau, Marc ; Arscott, Steve ; Lévêque, Gaëtan ; Mélin, Thierry</creatorcontrib><description>In order to evaluate the optical efficiency of tip-based probes for future tip-enhanced optical spectroscopy applications, we developed an experimental setup based on the coupling of an achromatic inverted microscope equipped with a total internal reflection objective and an atomic force microscopy (AFM) head. This spectroscopic tool has been validated using individual nanofabricated antennas (gold nanodisks/nanocones) on a glass substrate which act as nanoresonators based on localized surface plasmons. Spectrally tunable transverse electric and magnetic plasmonic resonances are identified and are in excellent agreement with numerical calculations performed as a function of the nanoantenna geometry and size. We investigated a series of state-of-the-art gold-coated AFM probes, which are commonly used for tip-enhanced (Raman spectroscopy) optical experiments. Their scattering spectrum consists of resonances depending on the tip sharpness or granularity superimposed on a broad emission spectrum due to a semi-infinite metal layer acting as a nonresonant antenna. From the comparison between the plasmonic response of both types of optical antennas, a new generation of probes for tip-enhanced optical spectroscopy is proposed in which single plasmonic nanoantennas are engineered at the apex of a nonmetallic AFM tip. As from numerical simulation results, such tips would ensure a spectral tunability as a function of the material, size, and geometry, together with expected high enhancement factors. Such features would allow the design of spectrally tunable surface-enhanced Raman spectroscopy substrates and should be a reliable and efficient alternative to tips commonly used in tip-enhanced optical spectroscopy experiments such as tip-enhanced Raman spectroscopy.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b09977</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Engineering Sciences ; Micro and nanotechnologies ; Microelectronics ; or physical chemistry ; Theoretical and</subject><ispartof>Journal of physical chemistry. C, 2019-11, Vol.123 (46), p.28392-28400</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-5632593f039d8e3346ec01321a8c9754afe1d667be8e909eec2d9ec466266da53</citedby><cites>FETCH-LOGICAL-a393t-5632593f039d8e3346ec01321a8c9754afe1d667be8e909eec2d9ec466266da53</cites><orcidid>0000-0001-9938-2683 ; 0000-0003-1777-3512 ; 0000-0003-1626-8207 ; 0000-0002-6850-0242 ; 0000-0002-4238-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b09977$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b09977$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02349635$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eschimèse, Damien</creatorcontrib><creatorcontrib>Hsia, Patrick</creatorcontrib><creatorcontrib>Vaurette, François</creatorcontrib><creatorcontrib>Deresmes, Dominique</creatorcontrib><creatorcontrib>De Bettignies, Philippe</creatorcontrib><creatorcontrib>Schreiber, Joachim</creatorcontrib><creatorcontrib>Chaigneau, Marc</creatorcontrib><creatorcontrib>Arscott, Steve</creatorcontrib><creatorcontrib>Lévêque, Gaëtan</creatorcontrib><creatorcontrib>Mélin, Thierry</creatorcontrib><title>Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In order to evaluate the optical efficiency of tip-based probes for future tip-enhanced optical spectroscopy applications, we developed an experimental setup based on the coupling of an achromatic inverted microscope equipped with a total internal reflection objective and an atomic force microscopy (AFM) head. This spectroscopic tool has been validated using individual nanofabricated antennas (gold nanodisks/nanocones) on a glass substrate which act as nanoresonators based on localized surface plasmons. Spectrally tunable transverse electric and magnetic plasmonic resonances are identified and are in excellent agreement with numerical calculations performed as a function of the nanoantenna geometry and size. We investigated a series of state-of-the-art gold-coated AFM probes, which are commonly used for tip-enhanced (Raman spectroscopy) optical experiments. Their scattering spectrum consists of resonances depending on the tip sharpness or granularity superimposed on a broad emission spectrum due to a semi-infinite metal layer acting as a nonresonant antenna. From the comparison between the plasmonic response of both types of optical antennas, a new generation of probes for tip-enhanced optical spectroscopy is proposed in which single plasmonic nanoantennas are engineered at the apex of a nonmetallic AFM tip. As from numerical simulation results, such tips would ensure a spectral tunability as a function of the material, size, and geometry, together with expected high enhancement factors. Such features would allow the design of spectrally tunable surface-enhanced Raman spectroscopy substrates and should be a reliable and efficient alternative to tips commonly used in tip-enhanced optical spectroscopy experiments such as tip-enhanced Raman spectroscopy.</description><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdo69IpNhx4tTHqgJaqdBKlHO0cTaQKrUjOy0qJz4d9yFunPYxM6udIeSWswFnMX8A7QerVuuBKphSWXZGelyJOMqSND3_65Psklx5v2IsFYyLHvkZ23ULDrp6i3Rqtui7-iNM1lBb0UUDfm1NrenC2RZdV6OnBXZfiIYuNwaKBukrGGuLFerOUzAlfcEOmqb-xvIAtc4WQVVZR-dtV2to6FsbyM56bdvdNbmooPF4c6p98v70uBxPotn8eToezSIQSnRRKkWcKlExocohCpFI1MFAzGGoVZYmUCEvpcwKHKJiClHHpUKdSBlLWUIq-uTuePcTmrx19RrcLrdQ55PRLN_vWCwSJUW65YHLjlwdnvQOqz8BZ_k-7Tykne_Tzk9pB8n9UXJA7MaZYOZ_-i_EpYYh</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Eschimèse, Damien</creator><creator>Hsia, Patrick</creator><creator>Vaurette, François</creator><creator>Deresmes, Dominique</creator><creator>De Bettignies, Philippe</creator><creator>Schreiber, Joachim</creator><creator>Chaigneau, Marc</creator><creator>Arscott, Steve</creator><creator>Lévêque, Gaëtan</creator><creator>Mélin, Thierry</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9938-2683</orcidid><orcidid>https://orcid.org/0000-0003-1777-3512</orcidid><orcidid>https://orcid.org/0000-0003-1626-8207</orcidid><orcidid>https://orcid.org/0000-0002-6850-0242</orcidid><orcidid>https://orcid.org/0000-0002-4238-3842</orcidid></search><sort><creationdate>20191121</creationdate><title>Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy</title><author>Eschimèse, Damien ; Hsia, Patrick ; Vaurette, François ; Deresmes, Dominique ; De Bettignies, Philippe ; Schreiber, Joachim ; Chaigneau, Marc ; Arscott, Steve ; Lévêque, Gaëtan ; Mélin, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-5632593f039d8e3346ec01321a8c9754afe1d667be8e909eec2d9ec466266da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eschimèse, Damien</creatorcontrib><creatorcontrib>Hsia, Patrick</creatorcontrib><creatorcontrib>Vaurette, François</creatorcontrib><creatorcontrib>Deresmes, Dominique</creatorcontrib><creatorcontrib>De Bettignies, Philippe</creatorcontrib><creatorcontrib>Schreiber, Joachim</creatorcontrib><creatorcontrib>Chaigneau, Marc</creatorcontrib><creatorcontrib>Arscott, Steve</creatorcontrib><creatorcontrib>Lévêque, Gaëtan</creatorcontrib><creatorcontrib>Mélin, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eschimèse, Damien</au><au>Hsia, Patrick</au><au>Vaurette, François</au><au>Deresmes, Dominique</au><au>De Bettignies, Philippe</au><au>Schreiber, Joachim</au><au>Chaigneau, Marc</au><au>Arscott, Steve</au><au>Lévêque, Gaëtan</au><au>Mélin, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-11-21</date><risdate>2019</risdate><volume>123</volume><issue>46</issue><spage>28392</spage><epage>28400</epage><pages>28392-28400</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In order to evaluate the optical efficiency of tip-based probes for future tip-enhanced optical spectroscopy applications, we developed an experimental setup based on the coupling of an achromatic inverted microscope equipped with a total internal reflection objective and an atomic force microscopy (AFM) head. This spectroscopic tool has been validated using individual nanofabricated antennas (gold nanodisks/nanocones) on a glass substrate which act as nanoresonators based on localized surface plasmons. Spectrally tunable transverse electric and magnetic plasmonic resonances are identified and are in excellent agreement with numerical calculations performed as a function of the nanoantenna geometry and size. We investigated a series of state-of-the-art gold-coated AFM probes, which are commonly used for tip-enhanced (Raman spectroscopy) optical experiments. Their scattering spectrum consists of resonances depending on the tip sharpness or granularity superimposed on a broad emission spectrum due to a semi-infinite metal layer acting as a nonresonant antenna. From the comparison between the plasmonic response of both types of optical antennas, a new generation of probes for tip-enhanced optical spectroscopy is proposed in which single plasmonic nanoantennas are engineered at the apex of a nonmetallic AFM tip. As from numerical simulation results, such tips would ensure a spectral tunability as a function of the material, size, and geometry, together with expected high enhancement factors. Such features would allow the design of spectrally tunable surface-enhanced Raman spectroscopy substrates and should be a reliable and efficient alternative to tips commonly used in tip-enhanced optical spectroscopy experiments such as tip-enhanced Raman spectroscopy.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b09977</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9938-2683</orcidid><orcidid>https://orcid.org/0000-0003-1777-3512</orcidid><orcidid>https://orcid.org/0000-0003-1626-8207</orcidid><orcidid>https://orcid.org/0000-0002-6850-0242</orcidid><orcidid>https://orcid.org/0000-0002-4238-3842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-11, Vol.123 (46), p.28392-28400
issn 1932-7447
1932-7455
language eng
recordid cdi_hal_primary_oai_HAL_hal_02349635v1
source American Chemical Society Journals
subjects Chemical Sciences
Engineering Sciences
Micro and nanotechnologies
Microelectronics
or physical chemistry
Theoretical and
title Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T15%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Investigation%20of%20Plasmonic%20Properties%20between%20Tunable%20Nanoobjects%20and%20Metallized%20Nanoprobes%20for%20Optical%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Eschime%CC%80se,%20Damien&rft.date=2019-11-21&rft.volume=123&rft.issue=46&rft.spage=28392&rft.epage=28400&rft.pages=28392-28400&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b09977&rft_dat=%3Cacs_hal_p%3Ea284854041%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true