Optically controlling the emission chirality of microlasers
Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavef...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2019-04, Vol.13 (4), p.283-288 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 4 |
container_start_page | 283 |
container_title | Nature photonics |
container_volume | 13 |
creator | Carlon Zambon, N. St-Jean, P. Milićević, M. Lemaître, A. Harouri, A. Le Gratiet, L. Bleu, O. Solnyshkov, D. D. Malpuech, G. Sagnes, I. Ravets, S. Amo, A. Bloch, J. |
description | Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
Based on optically breaking time-reversal symmetry by spin polarizing a gain medium with a circularly polarized optical pump, an integrated scheme for controlling the chirality of orbital angular momentum lasing is demonstrated. |
doi_str_mv | 10.1038/s41566-019-0380-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02349336v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195919127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fd693509863263334045a55dea49a7d46a880a5606125c309b7188f48a61f83d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AKxfR3LwmwVUpaoVCN7oOcSbTpqQzNZkK7a83ZaSuXN0H3zncexC6BfIAhKnHxEFIiQlonEeCD2doBCXXmCvNzk-9EpfoKqU1IYJpSkfoabHtfWVD2BdV1_axC8G3y6JfucJtfEq-a4tq5aMNvt8XXVNsfJUhm1xM1-iisSG5m986Rh8vz-_TGZ4vXt-mkzmuOMgeN7XUTBCtJKOSMcYJF1aI2lmubVlzaZUiVkgigYqKEf1ZglINV1ZCo1jNxuh-8F3ZYLbRb2zcm856M5vMzXFHKOOaMfkNmb0b2G3svnYu9Wbd7WKbzzMUtNCggZaZgoHKv6QUXXOyBWKOeZohT5PzNMc8zSFr6KBJmW2XLv45_y_6AQyLdno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195919127</pqid></control><display><type>article</type><title>Optically controlling the emission chirality of microlasers</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Carlon Zambon, N. ; St-Jean, P. ; Milićević, M. ; Lemaître, A. ; Harouri, A. ; Le Gratiet, L. ; Bleu, O. ; Solnyshkov, D. D. ; Malpuech, G. ; Sagnes, I. ; Ravets, S. ; Amo, A. ; Bloch, J.</creator><creatorcontrib>Carlon Zambon, N. ; St-Jean, P. ; Milićević, M. ; Lemaître, A. ; Harouri, A. ; Le Gratiet, L. ; Bleu, O. ; Solnyshkov, D. D. ; Malpuech, G. ; Sagnes, I. ; Ravets, S. ; Amo, A. ; Bloch, J.</creatorcontrib><description>Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
Based on optically breaking time-reversal symmetry by spin polarizing a gain medium with a circularly polarized optical pump, an integrated scheme for controlling the chirality of orbital angular momentum lasing is demonstrated.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0380-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/624/1020/1093 ; 639/766/400/1113 ; Angular momentum ; Applied and Technical Physics ; Chirality ; Coherent light ; Condensed Matter ; Emissions control ; Light beams ; Mesoscopic Systems and Quantum Hall Effect ; Microlasers ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics</subject><ispartof>Nature photonics, 2019-04, Vol.13 (4), p.283-288</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fd693509863263334045a55dea49a7d46a880a5606125c309b7188f48a61f83d3</citedby><cites>FETCH-LOGICAL-c416t-fd693509863263334045a55dea49a7d46a880a5606125c309b7188f48a61f83d3</cites><orcidid>0000-0002-2508-8315 ; 0000-0003-1892-9726 ; 0000-0002-2072-0756 ; 0000-0002-2506-759X ; 0000-0002-2898-6401 ; 0000-0001-8068-6599 ; 0000-0001-7745-3743 ; 0000-0002-2849-7667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-019-0380-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-019-0380-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02349336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlon Zambon, N.</creatorcontrib><creatorcontrib>St-Jean, P.</creatorcontrib><creatorcontrib>Milićević, M.</creatorcontrib><creatorcontrib>Lemaître, A.</creatorcontrib><creatorcontrib>Harouri, A.</creatorcontrib><creatorcontrib>Le Gratiet, L.</creatorcontrib><creatorcontrib>Bleu, O.</creatorcontrib><creatorcontrib>Solnyshkov, D. D.</creatorcontrib><creatorcontrib>Malpuech, G.</creatorcontrib><creatorcontrib>Sagnes, I.</creatorcontrib><creatorcontrib>Ravets, S.</creatorcontrib><creatorcontrib>Amo, A.</creatorcontrib><creatorcontrib>Bloch, J.</creatorcontrib><title>Optically controlling the emission chirality of microlasers</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
Based on optically breaking time-reversal symmetry by spin polarizing a gain medium with a circularly polarized optical pump, an integrated scheme for controlling the chirality of orbital angular momentum lasing is demonstrated.</description><subject>142/126</subject><subject>639/624/1020/1093</subject><subject>639/766/400/1113</subject><subject>Angular momentum</subject><subject>Applied and Technical Physics</subject><subject>Chirality</subject><subject>Coherent light</subject><subject>Condensed Matter</subject><subject>Emissions control</subject><subject>Light beams</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Microlasers</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AKxfR3LwmwVUpaoVCN7oOcSbTpqQzNZkK7a83ZaSuXN0H3zncexC6BfIAhKnHxEFIiQlonEeCD2doBCXXmCvNzk-9EpfoKqU1IYJpSkfoabHtfWVD2BdV1_axC8G3y6JfucJtfEq-a4tq5aMNvt8XXVNsfJUhm1xM1-iisSG5m986Rh8vz-_TGZ4vXt-mkzmuOMgeN7XUTBCtJKOSMcYJF1aI2lmubVlzaZUiVkgigYqKEf1ZglINV1ZCo1jNxuh-8F3ZYLbRb2zcm856M5vMzXFHKOOaMfkNmb0b2G3svnYu9Wbd7WKbzzMUtNCggZaZgoHKv6QUXXOyBWKOeZohT5PzNMc8zSFr6KBJmW2XLv45_y_6AQyLdno</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Carlon Zambon, N.</creator><creator>St-Jean, P.</creator><creator>Milićević, M.</creator><creator>Lemaître, A.</creator><creator>Harouri, A.</creator><creator>Le Gratiet, L.</creator><creator>Bleu, O.</creator><creator>Solnyshkov, D. D.</creator><creator>Malpuech, G.</creator><creator>Sagnes, I.</creator><creator>Ravets, S.</creator><creator>Amo, A.</creator><creator>Bloch, J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2508-8315</orcidid><orcidid>https://orcid.org/0000-0003-1892-9726</orcidid><orcidid>https://orcid.org/0000-0002-2072-0756</orcidid><orcidid>https://orcid.org/0000-0002-2506-759X</orcidid><orcidid>https://orcid.org/0000-0002-2898-6401</orcidid><orcidid>https://orcid.org/0000-0001-8068-6599</orcidid><orcidid>https://orcid.org/0000-0001-7745-3743</orcidid><orcidid>https://orcid.org/0000-0002-2849-7667</orcidid></search><sort><creationdate>20190401</creationdate><title>Optically controlling the emission chirality of microlasers</title><author>Carlon Zambon, N. ; St-Jean, P. ; Milićević, M. ; Lemaître, A. ; Harouri, A. ; Le Gratiet, L. ; Bleu, O. ; Solnyshkov, D. D. ; Malpuech, G. ; Sagnes, I. ; Ravets, S. ; Amo, A. ; Bloch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fd693509863263334045a55dea49a7d46a880a5606125c309b7188f48a61f83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>142/126</topic><topic>639/624/1020/1093</topic><topic>639/766/400/1113</topic><topic>Angular momentum</topic><topic>Applied and Technical Physics</topic><topic>Chirality</topic><topic>Coherent light</topic><topic>Condensed Matter</topic><topic>Emissions control</topic><topic>Light beams</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Microlasers</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlon Zambon, N.</creatorcontrib><creatorcontrib>St-Jean, P.</creatorcontrib><creatorcontrib>Milićević, M.</creatorcontrib><creatorcontrib>Lemaître, A.</creatorcontrib><creatorcontrib>Harouri, A.</creatorcontrib><creatorcontrib>Le Gratiet, L.</creatorcontrib><creatorcontrib>Bleu, O.</creatorcontrib><creatorcontrib>Solnyshkov, D. D.</creatorcontrib><creatorcontrib>Malpuech, G.</creatorcontrib><creatorcontrib>Sagnes, I.</creatorcontrib><creatorcontrib>Ravets, S.</creatorcontrib><creatorcontrib>Amo, A.</creatorcontrib><creatorcontrib>Bloch, J.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlon Zambon, N.</au><au>St-Jean, P.</au><au>Milićević, M.</au><au>Lemaître, A.</au><au>Harouri, A.</au><au>Le Gratiet, L.</au><au>Bleu, O.</au><au>Solnyshkov, D. D.</au><au>Malpuech, G.</au><au>Sagnes, I.</au><au>Ravets, S.</au><au>Amo, A.</au><au>Bloch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically controlling the emission chirality of microlasers</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
Based on optically breaking time-reversal symmetry by spin polarizing a gain medium with a circularly polarized optical pump, an integrated scheme for controlling the chirality of orbital angular momentum lasing is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-019-0380-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2508-8315</orcidid><orcidid>https://orcid.org/0000-0003-1892-9726</orcidid><orcidid>https://orcid.org/0000-0002-2072-0756</orcidid><orcidid>https://orcid.org/0000-0002-2506-759X</orcidid><orcidid>https://orcid.org/0000-0002-2898-6401</orcidid><orcidid>https://orcid.org/0000-0001-8068-6599</orcidid><orcidid>https://orcid.org/0000-0001-7745-3743</orcidid><orcidid>https://orcid.org/0000-0002-2849-7667</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2019-04, Vol.13 (4), p.283-288 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02349336v1 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 142/126 639/624/1020/1093 639/766/400/1113 Angular momentum Applied and Technical Physics Chirality Coherent light Condensed Matter Emissions control Light beams Mesoscopic Systems and Quantum Hall Effect Microlasers Photonics Physics Physics and Astronomy Quantum Physics |
title | Optically controlling the emission chirality of microlasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20controlling%20the%20emission%20chirality%20of%20microlasers&rft.jtitle=Nature%20photonics&rft.au=Carlon%20Zambon,%20N.&rft.date=2019-04-01&rft.volume=13&rft.issue=4&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0380-z&rft_dat=%3Cproquest_hal_p%3E2195919127%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195919127&rft_id=info:pmid/&rfr_iscdi=true |