Mitochondrial Protein UCP2 Controls Pancreas Development
The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2018-01, Vol.67 (1), p.78-84 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 67 |
creator | Broche, Benjamin Ben Fradj, Selma Aguilar, Esther Sancerni, Tiphaine Bénard, Matthieu Makaci, Fatna Berthault, Claire Scharfmann, Raphaël Alves-Guerra, Marie-Clotilde Duvillié, Bertrand |
description | The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used
knockout mice. We found an increased size of the pancreas in
fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1
progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the
pancreata. Finally, administration of the antioxidant
-acetyl-l-cysteine to
pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway. |
doi_str_mv | 10.2337/db17-0118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02347094v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957485726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbP04-Ack4EUP0dmPZHePJX5UqNiDBW_LJpnQlDRbd9OC_96U1goyh4Hh4Z2Zh5ArCveMc_lQ5lTGQKk6IkOquY45k5_HZAhAWUyllgNyFsICANK-TsmAaeinIIZEvdWdK-auLX1tm2jqXYd1G82yKYsy13beNSGa2rbwaEP0iBts3GqJbXdBTirbBLzc93Mye376yMbx5P3lNRtN4kII1cUcUqotZ5iwBLBKkQEopSUWqdIamKJpKYErniBSkCiSgvNKsKLKrZUi5-fkbpc7t41Z-Xpp_bdxtjbj0cRsZ8C4kKDFhvbs7Y5defe1xtCZZR0KbBrbolsHQ3UihUokS3v05h-6cGvf9p_0lKagE6rSv-WFdyF4rA4XUDBb9War3mzV9-z1PnGdL7E8kL-u-Q_yx3pf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991095186</pqid></control><display><type>article</type><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</creator><creatorcontrib>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</creatorcontrib><description>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used
knockout mice. We found an increased size of the pancreas in
fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1
progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the
pancreata. Finally, administration of the antioxidant
-acetyl-l-cysteine to
pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db17-0118</identifier><identifier>PMID: 29079704</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Acetylcysteine ; AKT protein ; Antioxidants ; Cell proliferation ; Embryos ; Fetuses ; Glucagon ; Insulin ; Life Sciences ; Medical research ; Mitochondria ; Mitochondrial uncoupling protein 2 ; Nuclear transport ; Oxidative stress ; Pancreas ; Phosphorylation ; Progenitor cells ; Proteins ; Reactive oxygen species ; Rodents ; Secretion ; Signal transduction ; Stem cells</subject><ispartof>Diabetes (New York, N.Y.), 2018-01, Vol.67 (1), p.78-84</ispartof><rights>2017 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jan 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</citedby><cites>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</cites><orcidid>0000-0003-0551-8100 ; 0000-0001-7619-337X ; 0000-0002-7918-1216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29079704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02347094$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Broche, Benjamin</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Aguilar, Esther</creatorcontrib><creatorcontrib>Sancerni, Tiphaine</creatorcontrib><creatorcontrib>Bénard, Matthieu</creatorcontrib><creatorcontrib>Makaci, Fatna</creatorcontrib><creatorcontrib>Berthault, Claire</creatorcontrib><creatorcontrib>Scharfmann, Raphaël</creatorcontrib><creatorcontrib>Alves-Guerra, Marie-Clotilde</creatorcontrib><creatorcontrib>Duvillié, Bertrand</creatorcontrib><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used
knockout mice. We found an increased size of the pancreas in
fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1
progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the
pancreata. Finally, administration of the antioxidant
-acetyl-l-cysteine to
pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</description><subject>Acetylcysteine</subject><subject>AKT protein</subject><subject>Antioxidants</subject><subject>Cell proliferation</subject><subject>Embryos</subject><subject>Fetuses</subject><subject>Glucagon</subject><subject>Insulin</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Mitochondria</subject><subject>Mitochondrial uncoupling protein 2</subject><subject>Nuclear transport</subject><subject>Oxidative stress</subject><subject>Pancreas</subject><subject>Phosphorylation</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Stem cells</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbP04-Ack4EUP0dmPZHePJX5UqNiDBW_LJpnQlDRbd9OC_96U1goyh4Hh4Z2Zh5ArCveMc_lQ5lTGQKk6IkOquY45k5_HZAhAWUyllgNyFsICANK-TsmAaeinIIZEvdWdK-auLX1tm2jqXYd1G82yKYsy13beNSGa2rbwaEP0iBts3GqJbXdBTirbBLzc93Mye376yMbx5P3lNRtN4kII1cUcUqotZ5iwBLBKkQEopSUWqdIamKJpKYErniBSkCiSgvNKsKLKrZUi5-fkbpc7t41Z-Xpp_bdxtjbj0cRsZ8C4kKDFhvbs7Y5defe1xtCZZR0KbBrbolsHQ3UihUokS3v05h-6cGvf9p_0lKagE6rSv-WFdyF4rA4XUDBb9War3mzV9-z1PnGdL7E8kL-u-Q_yx3pf</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Broche, Benjamin</creator><creator>Ben Fradj, Selma</creator><creator>Aguilar, Esther</creator><creator>Sancerni, Tiphaine</creator><creator>Bénard, Matthieu</creator><creator>Makaci, Fatna</creator><creator>Berthault, Claire</creator><creator>Scharfmann, Raphaël</creator><creator>Alves-Guerra, Marie-Clotilde</creator><creator>Duvillié, Bertrand</creator><general>American Diabetes Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0551-8100</orcidid><orcidid>https://orcid.org/0000-0001-7619-337X</orcidid><orcidid>https://orcid.org/0000-0002-7918-1216</orcidid></search><sort><creationdate>20180101</creationdate><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><author>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylcysteine</topic><topic>AKT protein</topic><topic>Antioxidants</topic><topic>Cell proliferation</topic><topic>Embryos</topic><topic>Fetuses</topic><topic>Glucagon</topic><topic>Insulin</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Mitochondria</topic><topic>Mitochondrial uncoupling protein 2</topic><topic>Nuclear transport</topic><topic>Oxidative stress</topic><topic>Pancreas</topic><topic>Phosphorylation</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broche, Benjamin</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Aguilar, Esther</creatorcontrib><creatorcontrib>Sancerni, Tiphaine</creatorcontrib><creatorcontrib>Bénard, Matthieu</creatorcontrib><creatorcontrib>Makaci, Fatna</creatorcontrib><creatorcontrib>Berthault, Claire</creatorcontrib><creatorcontrib>Scharfmann, Raphaël</creatorcontrib><creatorcontrib>Alves-Guerra, Marie-Clotilde</creatorcontrib><creatorcontrib>Duvillié, Bertrand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broche, Benjamin</au><au>Ben Fradj, Selma</au><au>Aguilar, Esther</au><au>Sancerni, Tiphaine</au><au>Bénard, Matthieu</au><au>Makaci, Fatna</au><au>Berthault, Claire</au><au>Scharfmann, Raphaël</au><au>Alves-Guerra, Marie-Clotilde</au><au>Duvillié, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Protein UCP2 Controls Pancreas Development</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>67</volume><issue>1</issue><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used
knockout mice. We found an increased size of the pancreas in
fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1
progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the
pancreata. Finally, administration of the antioxidant
-acetyl-l-cysteine to
pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>29079704</pmid><doi>10.2337/db17-0118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0551-8100</orcidid><orcidid>https://orcid.org/0000-0001-7619-337X</orcidid><orcidid>https://orcid.org/0000-0002-7918-1216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2018-01, Vol.67 (1), p.78-84 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02347094v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Acetylcysteine AKT protein Antioxidants Cell proliferation Embryos Fetuses Glucagon Insulin Life Sciences Medical research Mitochondria Mitochondrial uncoupling protein 2 Nuclear transport Oxidative stress Pancreas Phosphorylation Progenitor cells Proteins Reactive oxygen species Rodents Secretion Signal transduction Stem cells |
title | Mitochondrial Protein UCP2 Controls Pancreas Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Protein%20UCP2%20Controls%20Pancreas%20Development&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Broche,%20Benjamin&rft.date=2018-01-01&rft.volume=67&rft.issue=1&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db17-0118&rft_dat=%3Cproquest_hal_p%3E1957485726%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991095186&rft_id=info:pmid/29079704&rfr_iscdi=true |