Mitochondrial Protein UCP2 Controls Pancreas Development

The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2018-01, Vol.67 (1), p.78-84
Hauptverfasser: Broche, Benjamin, Ben Fradj, Selma, Aguilar, Esther, Sancerni, Tiphaine, Bénard, Matthieu, Makaci, Fatna, Berthault, Claire, Scharfmann, Raphaël, Alves-Guerra, Marie-Clotilde, Duvillié, Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 78
container_title Diabetes (New York, N.Y.)
container_volume 67
creator Broche, Benjamin
Ben Fradj, Selma
Aguilar, Esther
Sancerni, Tiphaine
Bénard, Matthieu
Makaci, Fatna
Berthault, Claire
Scharfmann, Raphaël
Alves-Guerra, Marie-Clotilde
Duvillié, Bertrand
description The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used knockout mice. We found an increased size of the pancreas in fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1 progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the pancreata. Finally, administration of the antioxidant -acetyl-l-cysteine to pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.
doi_str_mv 10.2337/db17-0118
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02347094v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957485726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbP04-Ack4EUP0dmPZHePJX5UqNiDBW_LJpnQlDRbd9OC_96U1goyh4Hh4Z2Zh5ArCveMc_lQ5lTGQKk6IkOquY45k5_HZAhAWUyllgNyFsICANK-TsmAaeinIIZEvdWdK-auLX1tm2jqXYd1G82yKYsy13beNSGa2rbwaEP0iBts3GqJbXdBTirbBLzc93Mye376yMbx5P3lNRtN4kII1cUcUqotZ5iwBLBKkQEopSUWqdIamKJpKYErniBSkCiSgvNKsKLKrZUi5-fkbpc7t41Z-Xpp_bdxtjbj0cRsZ8C4kKDFhvbs7Y5defe1xtCZZR0KbBrbolsHQ3UihUokS3v05h-6cGvf9p_0lKagE6rSv-WFdyF4rA4XUDBb9War3mzV9-z1PnGdL7E8kL-u-Q_yx3pf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991095186</pqid></control><display><type>article</type><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</creator><creatorcontrib>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</creatorcontrib><description>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used knockout mice. We found an increased size of the pancreas in fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1 progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the pancreata. Finally, administration of the antioxidant -acetyl-l-cysteine to pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db17-0118</identifier><identifier>PMID: 29079704</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Acetylcysteine ; AKT protein ; Antioxidants ; Cell proliferation ; Embryos ; Fetuses ; Glucagon ; Insulin ; Life Sciences ; Medical research ; Mitochondria ; Mitochondrial uncoupling protein 2 ; Nuclear transport ; Oxidative stress ; Pancreas ; Phosphorylation ; Progenitor cells ; Proteins ; Reactive oxygen species ; Rodents ; Secretion ; Signal transduction ; Stem cells</subject><ispartof>Diabetes (New York, N.Y.), 2018-01, Vol.67 (1), p.78-84</ispartof><rights>2017 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jan 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</citedby><cites>FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</cites><orcidid>0000-0003-0551-8100 ; 0000-0001-7619-337X ; 0000-0002-7918-1216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29079704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02347094$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Broche, Benjamin</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Aguilar, Esther</creatorcontrib><creatorcontrib>Sancerni, Tiphaine</creatorcontrib><creatorcontrib>Bénard, Matthieu</creatorcontrib><creatorcontrib>Makaci, Fatna</creatorcontrib><creatorcontrib>Berthault, Claire</creatorcontrib><creatorcontrib>Scharfmann, Raphaël</creatorcontrib><creatorcontrib>Alves-Guerra, Marie-Clotilde</creatorcontrib><creatorcontrib>Duvillié, Bertrand</creatorcontrib><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used knockout mice. We found an increased size of the pancreas in fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1 progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the pancreata. Finally, administration of the antioxidant -acetyl-l-cysteine to pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</description><subject>Acetylcysteine</subject><subject>AKT protein</subject><subject>Antioxidants</subject><subject>Cell proliferation</subject><subject>Embryos</subject><subject>Fetuses</subject><subject>Glucagon</subject><subject>Insulin</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Mitochondria</subject><subject>Mitochondrial uncoupling protein 2</subject><subject>Nuclear transport</subject><subject>Oxidative stress</subject><subject>Pancreas</subject><subject>Phosphorylation</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Stem cells</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbP04-Ack4EUP0dmPZHePJX5UqNiDBW_LJpnQlDRbd9OC_96U1goyh4Hh4Z2Zh5ArCveMc_lQ5lTGQKk6IkOquY45k5_HZAhAWUyllgNyFsICANK-TsmAaeinIIZEvdWdK-auLX1tm2jqXYd1G82yKYsy13beNSGa2rbwaEP0iBts3GqJbXdBTirbBLzc93Mye376yMbx5P3lNRtN4kII1cUcUqotZ5iwBLBKkQEopSUWqdIamKJpKYErniBSkCiSgvNKsKLKrZUi5-fkbpc7t41Z-Xpp_bdxtjbj0cRsZ8C4kKDFhvbs7Y5defe1xtCZZR0KbBrbolsHQ3UihUokS3v05h-6cGvf9p_0lKagE6rSv-WFdyF4rA4XUDBb9War3mzV9-z1PnGdL7E8kL-u-Q_yx3pf</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Broche, Benjamin</creator><creator>Ben Fradj, Selma</creator><creator>Aguilar, Esther</creator><creator>Sancerni, Tiphaine</creator><creator>Bénard, Matthieu</creator><creator>Makaci, Fatna</creator><creator>Berthault, Claire</creator><creator>Scharfmann, Raphaël</creator><creator>Alves-Guerra, Marie-Clotilde</creator><creator>Duvillié, Bertrand</creator><general>American Diabetes Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0551-8100</orcidid><orcidid>https://orcid.org/0000-0001-7619-337X</orcidid><orcidid>https://orcid.org/0000-0002-7918-1216</orcidid></search><sort><creationdate>20180101</creationdate><title>Mitochondrial Protein UCP2 Controls Pancreas Development</title><author>Broche, Benjamin ; Ben Fradj, Selma ; Aguilar, Esther ; Sancerni, Tiphaine ; Bénard, Matthieu ; Makaci, Fatna ; Berthault, Claire ; Scharfmann, Raphaël ; Alves-Guerra, Marie-Clotilde ; Duvillié, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-30619a32e5250ef6e2008897ec689902816d703835ee107e45c33f42cfbaa74b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylcysteine</topic><topic>AKT protein</topic><topic>Antioxidants</topic><topic>Cell proliferation</topic><topic>Embryos</topic><topic>Fetuses</topic><topic>Glucagon</topic><topic>Insulin</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Mitochondria</topic><topic>Mitochondrial uncoupling protein 2</topic><topic>Nuclear transport</topic><topic>Oxidative stress</topic><topic>Pancreas</topic><topic>Phosphorylation</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broche, Benjamin</creatorcontrib><creatorcontrib>Ben Fradj, Selma</creatorcontrib><creatorcontrib>Aguilar, Esther</creatorcontrib><creatorcontrib>Sancerni, Tiphaine</creatorcontrib><creatorcontrib>Bénard, Matthieu</creatorcontrib><creatorcontrib>Makaci, Fatna</creatorcontrib><creatorcontrib>Berthault, Claire</creatorcontrib><creatorcontrib>Scharfmann, Raphaël</creatorcontrib><creatorcontrib>Alves-Guerra, Marie-Clotilde</creatorcontrib><creatorcontrib>Duvillié, Bertrand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broche, Benjamin</au><au>Ben Fradj, Selma</au><au>Aguilar, Esther</au><au>Sancerni, Tiphaine</au><au>Bénard, Matthieu</au><au>Makaci, Fatna</au><au>Berthault, Claire</au><au>Scharfmann, Raphaël</au><au>Alves-Guerra, Marie-Clotilde</au><au>Duvillié, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Protein UCP2 Controls Pancreas Development</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>67</volume><issue>1</issue><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>The mitochondrial carrier uncoupling protein (UCP) 2 belongs to the family of the UCPs. Despite its name, it is now accepted that UCP2 is rather a metabolite transporter than a UCP. UCP2 can regulate oxidative stress and/or energetic metabolism. In rodents, UCP2 is involved in the control of α- and β-cell mass as well as insulin and glucagon secretion. Our aim was to determine whether the effects of UCP2 observed on β-cell mass have an embryonic origin. Thus, we used knockout mice. We found an increased size of the pancreas in fetuses at embryonic day 16.5, associated with a higher number of α- and β-cells. This phenotype was caused by an increase of PDX1 progenitor cells. Perinatally, an increase in the proliferation of endocrine cells also participates in their expansion. Next, we analyzed the oxidative stress in the pancreata. We quantified an increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) in the mutant, suggesting an increased production of reactive oxygen species (ROS). Phosphorylation of AKT, an ROS target, was also activated in the pancreata. Finally, administration of the antioxidant -acetyl-l-cysteine to pregnant mice alleviated the effect of knocking out UCP2 on pancreas development. Together, these data demonstrate that UCP2 controls pancreas development through the ROS-AKT signaling pathway.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>29079704</pmid><doi>10.2337/db17-0118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0551-8100</orcidid><orcidid>https://orcid.org/0000-0001-7619-337X</orcidid><orcidid>https://orcid.org/0000-0002-7918-1216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2018-01, Vol.67 (1), p.78-84
issn 0012-1797
1939-327X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02347094v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acetylcysteine
AKT protein
Antioxidants
Cell proliferation
Embryos
Fetuses
Glucagon
Insulin
Life Sciences
Medical research
Mitochondria
Mitochondrial uncoupling protein 2
Nuclear transport
Oxidative stress
Pancreas
Phosphorylation
Progenitor cells
Proteins
Reactive oxygen species
Rodents
Secretion
Signal transduction
Stem cells
title Mitochondrial Protein UCP2 Controls Pancreas Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Protein%20UCP2%20Controls%20Pancreas%20Development&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Broche,%20Benjamin&rft.date=2018-01-01&rft.volume=67&rft.issue=1&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db17-0118&rft_dat=%3Cproquest_hal_p%3E1957485726%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991095186&rft_id=info:pmid/29079704&rfr_iscdi=true