The facial weak order and its lattice quotients

We investigate the facial weak order, a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We first provide three characterizations of this poset: the original one in terms of cover relations, the geometric one that generalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-02, Vol.370 (2), p.1469-1507
Hauptverfasser: Dermenjian, Aram, Hohlweg, Christophe, Pilaud, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1507
container_issue 2
container_start_page 1469
container_title Transactions of the American Mathematical Society
container_volume 370
creator Dermenjian, Aram
Hohlweg, Christophe
Pilaud, Vincent
description We investigate the facial weak order, a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We first provide three characterizations of this poset: the original one in terms of cover relations, the geometric one that generalizes the notion of inversion sets, and the combinatorial one as an induced subposet of the poset of intervals of the weak order. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Björner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of their classes. As application, we describe the facial boolean lattice on the faces of the cube and the facial Cambrian lattice on the faces of the corresponding generalized associahedron.
doi_str_mv 10.1090/tran/7307
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02343548v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90016565</jstor_id><sourcerecordid>90016565</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-192926a041c342cb0f446bfc3db1a1083ae490a4b8b73a18d45cd3625bd32afc3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqUw8AGQPLAwhJ7_xLHHqqIUqRJLma2L46gpaQO2AfHtSRRUNqbT3fvd09Mj5JrBPQMDsxTwMCsEFCdkwkDrTOkcTskEAHhmjCzOyUWMu34FqdWEzDZbT2t0Dbb0y-Mr7ULlA8VDRZsUaYspNc7T948uNf6Q4iU5q7GN_up3TsnL8mGzWGXr58enxXydoZAmZcxwwxWCZE5I7kqopVRl7URVMuxzCfTSAMpSl4VApiuZu0oonpeV4NhzU3I3-m6xtW-h2WP4th02djVf2-EGXEiRS_3J_lgXuhiDr48PDOzQih1asUMrPXszsruYunAEDQBTucp7_XbUcR__sfkBQdRpEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The facial weak order and its lattice quotients</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Dermenjian, Aram ; Hohlweg, Christophe ; Pilaud, Vincent</creator><creatorcontrib>Dermenjian, Aram ; Hohlweg, Christophe ; Pilaud, Vincent</creatorcontrib><description>We investigate the facial weak order, a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We first provide three characterizations of this poset: the original one in terms of cover relations, the geometric one that generalizes the notion of inversion sets, and the combinatorial one as an induced subposet of the poset of intervals of the weak order. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Björner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of their classes. As application, we describe the facial boolean lattice on the faces of the cube and the facial Cambrian lattice on the faces of the corresponding generalized associahedron.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7307</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Combinatorics ; Mathematics ; Research article</subject><ispartof>Transactions of the American Mathematical Society, 2018-02, Vol.370 (2), p.1469-1507</ispartof><rights>Copyright 2017 American Mathematical Society</rights><rights>2018 by the American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-192926a041c342cb0f446bfc3db1a1083ae490a4b8b73a18d45cd3625bd32afc3</citedby><orcidid>0000-0002-2070-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2018-370-02/S0002-9947-2017-07307-4/S0002-9947-2017-07307-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2018-370-02/S0002-9947-2017-07307-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23304,23308,27903,27904,57995,57999,58228,58232,77582,77584,77592,77594</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02343548$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dermenjian, Aram</creatorcontrib><creatorcontrib>Hohlweg, Christophe</creatorcontrib><creatorcontrib>Pilaud, Vincent</creatorcontrib><title>The facial weak order and its lattice quotients</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>We investigate the facial weak order, a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We first provide three characterizations of this poset: the original one in terms of cover relations, the geometric one that generalizes the notion of inversion sets, and the combinatorial one as an induced subposet of the poset of intervals of the weak order. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Björner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of their classes. As application, we describe the facial boolean lattice on the faces of the cube and the facial Cambrian lattice on the faces of the corresponding generalized associahedron.</description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqUw8AGQPLAwhJ7_xLHHqqIUqRJLma2L46gpaQO2AfHtSRRUNqbT3fvd09Mj5JrBPQMDsxTwMCsEFCdkwkDrTOkcTskEAHhmjCzOyUWMu34FqdWEzDZbT2t0Dbb0y-Mr7ULlA8VDRZsUaYspNc7T948uNf6Q4iU5q7GN_up3TsnL8mGzWGXr58enxXydoZAmZcxwwxWCZE5I7kqopVRl7URVMuxzCfTSAMpSl4VApiuZu0oonpeV4NhzU3I3-m6xtW-h2WP4th02djVf2-EGXEiRS_3J_lgXuhiDr48PDOzQih1asUMrPXszsruYunAEDQBTucp7_XbUcR__sfkBQdRpEA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Dermenjian, Aram</creator><creator>Hohlweg, Christophe</creator><creator>Pilaud, Vincent</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2070-9223</orcidid></search><sort><creationdate>20180201</creationdate><title>The facial weak order and its lattice quotients</title><author>Dermenjian, Aram ; Hohlweg, Christophe ; Pilaud, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-192926a041c342cb0f446bfc3db1a1083ae490a4b8b73a18d45cd3625bd32afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dermenjian, Aram</creatorcontrib><creatorcontrib>Hohlweg, Christophe</creatorcontrib><creatorcontrib>Pilaud, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dermenjian, Aram</au><au>Hohlweg, Christophe</au><au>Pilaud, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The facial weak order and its lattice quotients</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>370</volume><issue>2</issue><spage>1469</spage><epage>1507</epage><pages>1469-1507</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We investigate the facial weak order, a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We first provide three characterizations of this poset: the original one in terms of cover relations, the geometric one that generalizes the notion of inversion sets, and the combinatorial one as an induced subposet of the poset of intervals of the weak order. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Björner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of their classes. As application, we describe the facial boolean lattice on the faces of the cube and the facial Cambrian lattice on the faces of the corresponding generalized associahedron.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/7307</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-2070-9223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2018-02, Vol.370 (2), p.1469-1507
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_02343548v1
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Combinatorics
Mathematics
Research article
title The facial weak order and its lattice quotients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20facial%20weak%20order%20and%20its%20lattice%20quotients&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Dermenjian,%20Aram&rft.date=2018-02-01&rft.volume=370&rft.issue=2&rft.spage=1469&rft.epage=1507&rft.pages=1469-1507&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7307&rft_dat=%3Cjstor_hal_p%3E90016565%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90016565&rfr_iscdi=true