Visual word spatial arrangement for image retrieval and classification
We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origi...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2014-02, Vol.47 (2), p.705-720 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 2 |
container_start_page | 705 |
container_title | Pattern recognition |
container_volume | 47 |
creator | Penatti, Otávio A.B. Silva, Fernanda B. Valle, Eduardo Gouet-Brunet, Valerie Torres, Ricardo da S. |
description | We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization.
•Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario. |
doi_str_mv | 10.1016/j.patcog.2013.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02338250v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313003336</els_id><sourcerecordid>1531003053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpods0b9CDL4X2YGdGsiP7UgihaQoLuTS5itnxeKvFa20l75a8fbU45NiTGM33zwyfUp8QKgS8vtpVB5o5bCsNaCpoK0D9Rq2wtaZssNZv1QrAYGk0mPfqQ0o7ALS5sVJ3Tz4daSz-htgXKY_xuaAYadrKXqa5GEIs_J62UkSZo5fTuT_1BY-Ukh8850iYPqp3A41JLl_eC_V49_3X7X25fvjx8_ZmXXINZi7RCAK0YoiH2trrztRth8KGe8u266nRTdMjEbPZ1K2mrullowE2qAdqwVyor8vc3zS6Q8yHxWcXyLv7m7U7_4E2ptUNnDCzXxb2EMOfo6TZ7X1iGUeaJByTw8bkYww0JqP1gnIMKUUZXmcjuLNit3OLYndW7KB1WXGOfX7ZQIlpHLI19uk1q22H1mqbuW8LJ1nNyUt0ib1MLL2PwrPrg___on8HxZKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531003053</pqid></control><display><type>article</type><title>Visual word spatial arrangement for image retrieval and classification</title><source>Elsevier ScienceDirect Journals</source><creator>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</creator><creatorcontrib>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</creatorcontrib><description>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization.
•Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.08.012</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Classification ; Computer Science ; Computer Vision and Pattern Recognition ; Exact sciences and technology ; Image classification ; Image detection ; Image processing ; Image retrieval ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Pattern recognition ; Pyramids ; Retrieval ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spatial arrangement ; Telecommunications and information theory ; Vectors (mathematics) ; Visual ; Visual words</subject><ispartof>Pattern recognition, 2014-02, Vol.47 (2), p.705-720</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</citedby><cites>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</cites><orcidid>0000-0003-3666-5146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320313003336$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27917727$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02338250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Penatti, Otávio A.B.</creatorcontrib><creatorcontrib>Silva, Fernanda B.</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Gouet-Brunet, Valerie</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><title>Visual word spatial arrangement for image retrieval and classification</title><title>Pattern recognition</title><description>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization.
•Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</description><subject>Applied sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Exact sciences and technology</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Pyramids</subject><subject>Retrieval</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spatial arrangement</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><subject>Visual</subject><subject>Visual words</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpods0b9CDL4X2YGdGsiP7UgihaQoLuTS5itnxeKvFa20l75a8fbU45NiTGM33zwyfUp8QKgS8vtpVB5o5bCsNaCpoK0D9Rq2wtaZssNZv1QrAYGk0mPfqQ0o7ALS5sVJ3Tz4daSz-htgXKY_xuaAYadrKXqa5GEIs_J62UkSZo5fTuT_1BY-Ukh8850iYPqp3A41JLl_eC_V49_3X7X25fvjx8_ZmXXINZi7RCAK0YoiH2trrztRth8KGe8u266nRTdMjEbPZ1K2mrullowE2qAdqwVyor8vc3zS6Q8yHxWcXyLv7m7U7_4E2ptUNnDCzXxb2EMOfo6TZ7X1iGUeaJByTw8bkYww0JqP1gnIMKUUZXmcjuLNit3OLYndW7KB1WXGOfX7ZQIlpHLI19uk1q22H1mqbuW8LJ1nNyUt0ib1MLL2PwrPrg___on8HxZKk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Penatti, Otávio A.B.</creator><creator>Silva, Fernanda B.</creator><creator>Valle, Eduardo</creator><creator>Gouet-Brunet, Valerie</creator><creator>Torres, Ricardo da S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3666-5146</orcidid></search><sort><creationdate>20140201</creationdate><title>Visual word spatial arrangement for image retrieval and classification</title><author>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Exact sciences and technology</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Pyramids</topic><topic>Retrieval</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spatial arrangement</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><topic>Visual</topic><topic>Visual words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penatti, Otávio A.B.</creatorcontrib><creatorcontrib>Silva, Fernanda B.</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Gouet-Brunet, Valerie</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penatti, Otávio A.B.</au><au>Silva, Fernanda B.</au><au>Valle, Eduardo</au><au>Gouet-Brunet, Valerie</au><au>Torres, Ricardo da S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual word spatial arrangement for image retrieval and classification</atitle><jtitle>Pattern recognition</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>47</volume><issue>2</issue><spage>705</spage><epage>720</epage><pages>705-720</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization.
•Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.08.012</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3666-5146</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2014-02, Vol.47 (2), p.705-720 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02338250v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Classification Computer Science Computer Vision and Pattern Recognition Exact sciences and technology Image classification Image detection Image processing Image retrieval Information theory Information, signal and communications theory Mathematical analysis Pattern recognition Pyramids Retrieval Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Spatial arrangement Telecommunications and information theory Vectors (mathematics) Visual Visual words |
title | Visual word spatial arrangement for image retrieval and classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20word%20spatial%20arrangement%20for%20image%20retrieval%20and%20classification&rft.jtitle=Pattern%20recognition&rft.au=Penatti,%20Ot%C3%A1vio%20A.B.&rft.date=2014-02-01&rft.volume=47&rft.issue=2&rft.spage=705&rft.epage=720&rft.pages=705-720&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.08.012&rft_dat=%3Cproquest_hal_p%3E1531003053%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531003053&rft_id=info:pmid/&rft_els_id=S0031320313003336&rfr_iscdi=true |