Visual word spatial arrangement for image retrieval and classification

We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2014-02, Vol.47 (2), p.705-720
Hauptverfasser: Penatti, Otávio A.B., Silva, Fernanda B., Valle, Eduardo, Gouet-Brunet, Valerie, Torres, Ricardo da S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue 2
container_start_page 705
container_title Pattern recognition
container_volume 47
creator Penatti, Otávio A.B.
Silva, Fernanda B.
Valle, Eduardo
Gouet-Brunet, Valerie
Torres, Ricardo da S.
description We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. •Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.
doi_str_mv 10.1016/j.patcog.2013.08.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02338250v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320313003336</els_id><sourcerecordid>1531003053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpods0b9CDL4X2YGdGsiP7UgihaQoLuTS5itnxeKvFa20l75a8fbU45NiTGM33zwyfUp8QKgS8vtpVB5o5bCsNaCpoK0D9Rq2wtaZssNZv1QrAYGk0mPfqQ0o7ALS5sVJ3Tz4daSz-htgXKY_xuaAYadrKXqa5GEIs_J62UkSZo5fTuT_1BY-Ukh8850iYPqp3A41JLl_eC_V49_3X7X25fvjx8_ZmXXINZi7RCAK0YoiH2trrztRth8KGe8u266nRTdMjEbPZ1K2mrullowE2qAdqwVyor8vc3zS6Q8yHxWcXyLv7m7U7_4E2ptUNnDCzXxb2EMOfo6TZ7X1iGUeaJByTw8bkYww0JqP1gnIMKUUZXmcjuLNit3OLYndW7KB1WXGOfX7ZQIlpHLI19uk1q22H1mqbuW8LJ1nNyUt0ib1MLL2PwrPrg___on8HxZKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531003053</pqid></control><display><type>article</type><title>Visual word spatial arrangement for image retrieval and classification</title><source>Elsevier ScienceDirect Journals</source><creator>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</creator><creatorcontrib>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</creatorcontrib><description>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. •Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2013.08.012</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Classification ; Computer Science ; Computer Vision and Pattern Recognition ; Exact sciences and technology ; Image classification ; Image detection ; Image processing ; Image retrieval ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Pattern recognition ; Pyramids ; Retrieval ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Spatial arrangement ; Telecommunications and information theory ; Vectors (mathematics) ; Visual ; Visual words</subject><ispartof>Pattern recognition, 2014-02, Vol.47 (2), p.705-720</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</citedby><cites>FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</cites><orcidid>0000-0003-3666-5146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320313003336$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27917727$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02338250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Penatti, Otávio A.B.</creatorcontrib><creatorcontrib>Silva, Fernanda B.</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Gouet-Brunet, Valerie</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><title>Visual word spatial arrangement for image retrieval and classification</title><title>Pattern recognition</title><description>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. •Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</description><subject>Applied sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Exact sciences and technology</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Pyramids</subject><subject>Retrieval</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Spatial arrangement</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><subject>Visual</subject><subject>Visual words</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpods0b9CDL4X2YGdGsiP7UgihaQoLuTS5itnxeKvFa20l75a8fbU45NiTGM33zwyfUp8QKgS8vtpVB5o5bCsNaCpoK0D9Rq2wtaZssNZv1QrAYGk0mPfqQ0o7ALS5sVJ3Tz4daSz-htgXKY_xuaAYadrKXqa5GEIs_J62UkSZo5fTuT_1BY-Ukh8850iYPqp3A41JLl_eC_V49_3X7X25fvjx8_ZmXXINZi7RCAK0YoiH2trrztRth8KGe8u266nRTdMjEbPZ1K2mrullowE2qAdqwVyor8vc3zS6Q8yHxWcXyLv7m7U7_4E2ptUNnDCzXxb2EMOfo6TZ7X1iGUeaJByTw8bkYww0JqP1gnIMKUUZXmcjuLNit3OLYndW7KB1WXGOfX7ZQIlpHLI19uk1q22H1mqbuW8LJ1nNyUt0ib1MLL2PwrPrg___on8HxZKk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Penatti, Otávio A.B.</creator><creator>Silva, Fernanda B.</creator><creator>Valle, Eduardo</creator><creator>Gouet-Brunet, Valerie</creator><creator>Torres, Ricardo da S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3666-5146</orcidid></search><sort><creationdate>20140201</creationdate><title>Visual word spatial arrangement for image retrieval and classification</title><author>Penatti, Otávio A.B. ; Silva, Fernanda B. ; Valle, Eduardo ; Gouet-Brunet, Valerie ; Torres, Ricardo da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-13e1008e3acf4776934891ec3cd7c79da5255d1aacc3b482a95deb200b12fa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Exact sciences and technology</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Pyramids</topic><topic>Retrieval</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Spatial arrangement</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><topic>Visual</topic><topic>Visual words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penatti, Otávio A.B.</creatorcontrib><creatorcontrib>Silva, Fernanda B.</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Gouet-Brunet, Valerie</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penatti, Otávio A.B.</au><au>Silva, Fernanda B.</au><au>Valle, Eduardo</au><au>Gouet-Brunet, Valerie</au><au>Torres, Ricardo da S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual word spatial arrangement for image retrieval and classification</atitle><jtitle>Pattern recognition</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>47</volume><issue>2</issue><spage>705</spage><epage>720</epage><pages>705-720</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>We present word spatial arrangement (WSA), an approach to represent the spatial arrangement of visual words under the bag-of-visual-words model. It lies in a simple idea which encodes the relative position of visual words by splitting the image space into quadrants using each detected point as origin. WSA generates compact feature vectors and is flexible for being used for image retrieval and classification, for working with hard or soft assignment, requiring no pre/post processing for spatial verification. Experiments in the retrieval scenario show the superiority of WSA in relation to Spatial Pyramids. Experiments in the classification scenario show a reasonable compromise between those methods, with Spatial Pyramids generating larger feature vectors, while WSA provides adequate performance with much more compact features. As WSA encodes only the spatial information of visual words and not their frequency of occurrence, the results indicate the importance of such information for visual categorization. •Spatial arrangement of visual words (WSA) for image retrieval and classification.•WSA generates vectors more compact than the traditional spatial pooling methods.•WSA outperforms Spatial Pyramids in the retrieval scenario.•WSA presents adequate performance in the classification scenario.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2013.08.012</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3666-5146</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2014-02, Vol.47 (2), p.705-720
issn 0031-3203
1873-5142
language eng
recordid cdi_hal_primary_oai_HAL_hal_02338250v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Classification
Computer Science
Computer Vision and Pattern Recognition
Exact sciences and technology
Image classification
Image detection
Image processing
Image retrieval
Information theory
Information, signal and communications theory
Mathematical analysis
Pattern recognition
Pyramids
Retrieval
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Spatial arrangement
Telecommunications and information theory
Vectors (mathematics)
Visual
Visual words
title Visual word spatial arrangement for image retrieval and classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20word%20spatial%20arrangement%20for%20image%20retrieval%20and%20classification&rft.jtitle=Pattern%20recognition&rft.au=Penatti,%20Ot%C3%A1vio%20A.B.&rft.date=2014-02-01&rft.volume=47&rft.issue=2&rft.spage=705&rft.epage=720&rft.pages=705-720&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2013.08.012&rft_dat=%3Cproquest_hal_p%3E1531003053%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531003053&rft_id=info:pmid/&rft_els_id=S0031320313003336&rfr_iscdi=true