An asymptotic derivation of a general imperfect interface law for linear multiphysics composites

The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2019-12, Vol.180-181, p.97-107
Hauptverfasser: Serpilli, M., Rizzoni, R., Lebon, F., Dumont, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue
container_start_page 97
container_title International journal of solids and structures
container_volume 180-181
creator Serpilli, M.
Rizzoni, R.
Lebon, F.
Dumont, S.
description The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.
doi_str_mv 10.1016/j.ijsolstr.2019.07.014
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02336669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319303257</els_id><sourcerecordid>2301882628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</originalsourceid><addsrcrecordid>eNqFkEGr1DAQx4MouD79ChLw5KF1krZpcnN5qE9Y8KLnOJtOfCltU5Psyn57u6x69TTD8Js_Mz_GXguoBQj1bqzDmOOUS6olCFNDX4Non7Cd0L2ppGjVU7YDkFD1SjfP2YucRwBoGwM79n2_cMyXeS2xBMcHSuGMJcSFR8-R_6CFEk48zCslT67wsJStQ0d8wl_cx8SnsBAmPp-mEtbHSw4ucxfnNeZQKL9kzzxOmV79qXfs28cPX-8fqsOXT5_v94fKtVKW6ug77L3G1rSGnDAaSOoej6ZDJ6GFYegNKRC98wqVx37opDbHBpuuQ6K2uWNvb7mPONk1hRnTxUYM9mF_sNcZyKZRSpmz2Ng3N3ZN8eeJcrFjPKVlO8_KBoTWUkm9UepGuRRzTuT_xQqwV_N2tH_N26t5C73dzG-L72-LtP17DpRsdoEWR0NIm0I7xPC_iN-vfJF0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301882628</pqid></control><display><type>article</type><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</creator><creatorcontrib>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</creatorcontrib><description>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.07.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Asymptotic analysis ; Asymptotic methods ; Asymptotic series ; Derivation ; Interfaces ; Mathematical models ; Mechanics ; Multiphysics materials ; Physics ; Solid mechanics</subject><ispartof>International journal of solids and structures, 2019-12, Vol.180-181, p.97-107</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</citedby><cites>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</cites><orcidid>0000-0002-4652-9386 ; 0000-0003-4962-7878 ; 0000-0001-8271-5314 ; 0000-0003-4292-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2019.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02336669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serpilli, M.</creatorcontrib><creatorcontrib>Rizzoni, R.</creatorcontrib><creatorcontrib>Lebon, F.</creatorcontrib><creatorcontrib>Dumont, S.</creatorcontrib><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><title>International journal of solids and structures</title><description>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</description><subject>Asymptotic analysis</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Derivation</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Multiphysics materials</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEGr1DAQx4MouD79ChLw5KF1krZpcnN5qE9Y8KLnOJtOfCltU5Psyn57u6x69TTD8Js_Mz_GXguoBQj1bqzDmOOUS6olCFNDX4Non7Cd0L2ppGjVU7YDkFD1SjfP2YucRwBoGwM79n2_cMyXeS2xBMcHSuGMJcSFR8-R_6CFEk48zCslT67wsJStQ0d8wl_cx8SnsBAmPp-mEtbHSw4ucxfnNeZQKL9kzzxOmV79qXfs28cPX-8fqsOXT5_v94fKtVKW6ug77L3G1rSGnDAaSOoej6ZDJ6GFYegNKRC98wqVx37opDbHBpuuQ6K2uWNvb7mPONk1hRnTxUYM9mF_sNcZyKZRSpmz2Ng3N3ZN8eeJcrFjPKVlO8_KBoTWUkm9UepGuRRzTuT_xQqwV_N2tH_N26t5C73dzG-L72-LtP17DpRsdoEWR0NIm0I7xPC_iN-vfJF0</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Serpilli, M.</creator><creator>Rizzoni, R.</creator><creator>Lebon, F.</creator><creator>Dumont, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4652-9386</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid></search><sort><creationdate>20191215</creationdate><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><author>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic analysis</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Derivation</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Multiphysics materials</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serpilli, M.</creatorcontrib><creatorcontrib>Rizzoni, R.</creatorcontrib><creatorcontrib>Lebon, F.</creatorcontrib><creatorcontrib>Dumont, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serpilli, M.</au><au>Rizzoni, R.</au><au>Lebon, F.</au><au>Dumont, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</atitle><jtitle>International journal of solids and structures</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>180-181</volume><spage>97</spage><epage>107</epage><pages>97-107</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.07.014</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4652-9386</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2019-12, Vol.180-181, p.97-107
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_02336669v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Asymptotic analysis
Asymptotic methods
Asymptotic series
Derivation
Interfaces
Mathematical models
Mechanics
Multiphysics materials
Physics
Solid mechanics
title An asymptotic derivation of a general imperfect interface law for linear multiphysics composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20derivation%20of%20a%20general%20imperfect%20interface%20law%20for%20linear%20multiphysics%20composites&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Serpilli,%20M.&rft.date=2019-12-15&rft.volume=180-181&rft.spage=97&rft.epage=107&rft.pages=97-107&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.07.014&rft_dat=%3Cproquest_hal_p%3E2301882628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301882628&rft_id=info:pmid/&rft_els_id=S0020768319303257&rfr_iscdi=true