An asymptotic derivation of a general imperfect interface law for linear multiphysics composites
The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small paramet...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2019-12, Vol.180-181, p.97-107 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | International journal of solids and structures |
container_volume | 180-181 |
creator | Serpilli, M. Rizzoni, R. Lebon, F. Dumont, S. |
description | The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models. |
doi_str_mv | 10.1016/j.ijsolstr.2019.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02336669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319303257</els_id><sourcerecordid>2301882628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</originalsourceid><addsrcrecordid>eNqFkEGr1DAQx4MouD79ChLw5KF1krZpcnN5qE9Y8KLnOJtOfCltU5Psyn57u6x69TTD8Js_Mz_GXguoBQj1bqzDmOOUS6olCFNDX4Non7Cd0L2ppGjVU7YDkFD1SjfP2YucRwBoGwM79n2_cMyXeS2xBMcHSuGMJcSFR8-R_6CFEk48zCslT67wsJStQ0d8wl_cx8SnsBAmPp-mEtbHSw4ucxfnNeZQKL9kzzxOmV79qXfs28cPX-8fqsOXT5_v94fKtVKW6ug77L3G1rSGnDAaSOoej6ZDJ6GFYegNKRC98wqVx37opDbHBpuuQ6K2uWNvb7mPONk1hRnTxUYM9mF_sNcZyKZRSpmz2Ng3N3ZN8eeJcrFjPKVlO8_KBoTWUkm9UepGuRRzTuT_xQqwV_N2tH_N26t5C73dzG-L72-LtP17DpRsdoEWR0NIm0I7xPC_iN-vfJF0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301882628</pqid></control><display><type>article</type><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</creator><creatorcontrib>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</creatorcontrib><description>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.07.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Asymptotic analysis ; Asymptotic methods ; Asymptotic series ; Derivation ; Interfaces ; Mathematical models ; Mechanics ; Multiphysics materials ; Physics ; Solid mechanics</subject><ispartof>International journal of solids and structures, 2019-12, Vol.180-181, p.97-107</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</citedby><cites>FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</cites><orcidid>0000-0002-4652-9386 ; 0000-0003-4962-7878 ; 0000-0001-8271-5314 ; 0000-0003-4292-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2019.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02336669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serpilli, M.</creatorcontrib><creatorcontrib>Rizzoni, R.</creatorcontrib><creatorcontrib>Lebon, F.</creatorcontrib><creatorcontrib>Dumont, S.</creatorcontrib><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><title>International journal of solids and structures</title><description>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</description><subject>Asymptotic analysis</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Derivation</subject><subject>Interfaces</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Multiphysics materials</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEGr1DAQx4MouD79ChLw5KF1krZpcnN5qE9Y8KLnOJtOfCltU5Psyn57u6x69TTD8Js_Mz_GXguoBQj1bqzDmOOUS6olCFNDX4Non7Cd0L2ppGjVU7YDkFD1SjfP2YucRwBoGwM79n2_cMyXeS2xBMcHSuGMJcSFR8-R_6CFEk48zCslT67wsJStQ0d8wl_cx8SnsBAmPp-mEtbHSw4ucxfnNeZQKL9kzzxOmV79qXfs28cPX-8fqsOXT5_v94fKtVKW6ug77L3G1rSGnDAaSOoej6ZDJ6GFYegNKRC98wqVx37opDbHBpuuQ6K2uWNvb7mPONk1hRnTxUYM9mF_sNcZyKZRSpmz2Ng3N3ZN8eeJcrFjPKVlO8_KBoTWUkm9UepGuRRzTuT_xQqwV_N2tH_N26t5C73dzG-L72-LtP17DpRsdoEWR0NIm0I7xPC_iN-vfJF0</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Serpilli, M.</creator><creator>Rizzoni, R.</creator><creator>Lebon, F.</creator><creator>Dumont, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4652-9386</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid></search><sort><creationdate>20191215</creationdate><title>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</title><author>Serpilli, M. ; Rizzoni, R. ; Lebon, F. ; Dumont, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-bf5a7f8a4949ec1980e287ab95ac2040dd79e6017cf6a6fa7d5289b3a355aee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic analysis</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Derivation</topic><topic>Interfaces</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Multiphysics materials</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serpilli, M.</creatorcontrib><creatorcontrib>Rizzoni, R.</creatorcontrib><creatorcontrib>Lebon, F.</creatorcontrib><creatorcontrib>Dumont, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serpilli, M.</au><au>Rizzoni, R.</au><au>Lebon, F.</au><au>Dumont, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic derivation of a general imperfect interface law for linear multiphysics composites</atitle><jtitle>International journal of solids and structures</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>180-181</volume><spage>97</spage><epage>107</epage><pages>97-107</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The paper is concerned with the derivation of a general imperfect interface law in a linear multiphysics framework for a composite, constituted by two solids, separated by a thin adhesive layer. The analysis is performed by means of the asymptotic expansions technique. After defining a small parameter ε, which will tend to zero, associated with the thickness and the constitutive coefficients of the intermediate layer, we characterize three different limit models and their associated limit problems: the soft interface model, in which the constitutive coefficients depend linearly on ε; the hard interface model, in which the constitutive properties are independent of ε; the rigid interface model, in which they depend on 1ε. The asymptotic expansion method is reviewed by taking into account the effect of higher order terms and by defining a general multiphysics interface law which comprises the above aforementioned models.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.07.014</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4652-9386</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2019-12, Vol.180-181, p.97-107 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02336669v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Asymptotic analysis Asymptotic methods Asymptotic series Derivation Interfaces Mathematical models Mechanics Multiphysics materials Physics Solid mechanics |
title | An asymptotic derivation of a general imperfect interface law for linear multiphysics composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20derivation%20of%20a%20general%20imperfect%20interface%20law%20for%20linear%20multiphysics%20composites&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Serpilli,%20M.&rft.date=2019-12-15&rft.volume=180-181&rft.spage=97&rft.epage=107&rft.pages=97-107&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.07.014&rft_dat=%3Cproquest_hal_p%3E2301882628%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301882628&rft_id=info:pmid/&rft_els_id=S0020768319303257&rfr_iscdi=true |