Twenty Years of Gas Phase Structural Biology

Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20th anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2013-09, Vol.21 (9), p.1541-1550
Hauptverfasser: Marcoux, Julien, Robinson, Carol V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 9
container_start_page 1541
container_title Structure (London)
container_volume 21
creator Marcoux, Julien
Robinson, Carol V.
description Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20th anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology. [Display omitted] •History of the development of mass spectrometry for membrane protein complexes•Progress from the first mass spectra to the effects of PTMs and lipid binding•Future perspectives including enhanced resolution of mass spectra and ion mobility Over the last two decades, mass spectrometry and its applications to structural biology have come of age. To mark the 20th anniversary of the journal, Marcoux and Robinson trace the pathway to acceptance of this technique from initial forays into protein ligand interactions to the current work on membrane assemblies.
doi_str_mv 10.1016/j.str.2013.08.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02335558v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212613002931</els_id><sourcerecordid>1431298483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-638ae0e4ccef3116b76e874a13836ad1aa92126392fd09c9fa21912783040d5d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOj5-gBvpUsHWe5MmTXA1ii8YUFAXrkJMb7VDZ6pJq8y_t8OoS11duHzncPgY20fIEFCdTLPYhYwDigx0BsDX2Ah1odMctVpnIzDKpBy52mLbMU5hICTAJtviOSAUKEbs-OGT5t0ieSIXYtJWyZWLyd2ri5Tcd6H3XR9ck5zVbdO-LHbZRuWaSHvfd4c9Xl48nF-nk9urm_PxJPWSmy5VQjsCyr2nSiCq50KRLnKHQgvlSnTOLEcJw6sSjDeV42iQF1pADqUsxQ47WvW-usa-hXrmwsK2rrbX44ld_oALIaXUHziwhyv2LbTvPcXOzuroqWncnNo-WpSqgEKihP_RXCA3OtdiQHGF-tDGGKj6nYFgl-7t1A7u7dK9BW0Hs0Pm4Lu-f55R-Zv4kT0ApyuABncfNQUbfU1zT2UdyHe2bOs_6r8AjmOQbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431298483</pqid></control><display><type>article</type><title>Twenty Years of Gas Phase Structural Biology</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Marcoux, Julien ; Robinson, Carol V.</creator><creatorcontrib>Marcoux, Julien ; Robinson, Carol V.</creatorcontrib><description>Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20th anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology. [Display omitted] •History of the development of mass spectrometry for membrane protein complexes•Progress from the first mass spectra to the effects of PTMs and lipid binding•Future perspectives including enhanced resolution of mass spectra and ion mobility Over the last two decades, mass spectrometry and its applications to structural biology have come of age. To mark the 20th anniversary of the journal, Marcoux and Robinson trace the pathway to acceptance of this technique from initial forays into protein ligand interactions to the current work on membrane assemblies.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2013.08.002</identifier><identifier>PMID: 24010713</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Binding ; Biochemistry, Molecular Biology ; Biology ; Detergents - chemistry ; Drugs ; Gas phases ; Gases - chemistry ; Humans ; Life Sciences ; Lipids - chemistry ; Mass spectra ; Membrane Proteins - chemistry ; Membranes ; Micelles ; Molecular Biology ; Multiprotein Complexes - chemistry ; Protein Binding ; Proteins ; Solubility ; Spectrometry, Mass, Electrospray Ionization ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Structural Biology</subject><ispartof>Structure (London), 2013-09, Vol.21 (9), p.1541-1550</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-638ae0e4ccef3116b76e874a13836ad1aa92126392fd09c9fa21912783040d5d3</citedby><cites>FETCH-LOGICAL-c529t-638ae0e4ccef3116b76e874a13836ad1aa92126392fd09c9fa21912783040d5d3</cites><orcidid>0000-0001-7321-7436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969212613002931$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24010713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02335558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcoux, Julien</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><title>Twenty Years of Gas Phase Structural Biology</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20th anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology. [Display omitted] •History of the development of mass spectrometry for membrane protein complexes•Progress from the first mass spectra to the effects of PTMs and lipid binding•Future perspectives including enhanced resolution of mass spectra and ion mobility Over the last two decades, mass spectrometry and its applications to structural biology have come of age. To mark the 20th anniversary of the journal, Marcoux and Robinson trace the pathway to acceptance of this technique from initial forays into protein ligand interactions to the current work on membrane assemblies.</description><subject>Animals</subject><subject>Binding</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>Detergents - chemistry</subject><subject>Drugs</subject><subject>Gas phases</subject><subject>Gases - chemistry</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipids - chemistry</subject><subject>Mass spectra</subject><subject>Membrane Proteins - chemistry</subject><subject>Membranes</subject><subject>Micelles</subject><subject>Molecular Biology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Solubility</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Structural Biology</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAUhYMoOj5-gBvpUsHWe5MmTXA1ii8YUFAXrkJMb7VDZ6pJq8y_t8OoS11duHzncPgY20fIEFCdTLPYhYwDigx0BsDX2Ah1odMctVpnIzDKpBy52mLbMU5hICTAJtviOSAUKEbs-OGT5t0ieSIXYtJWyZWLyd2ri5Tcd6H3XR9ck5zVbdO-LHbZRuWaSHvfd4c9Xl48nF-nk9urm_PxJPWSmy5VQjsCyr2nSiCq50KRLnKHQgvlSnTOLEcJw6sSjDeV42iQF1pADqUsxQ47WvW-usa-hXrmwsK2rrbX44ld_oALIaXUHziwhyv2LbTvPcXOzuroqWncnNo-WpSqgEKihP_RXCA3OtdiQHGF-tDGGKj6nYFgl-7t1A7u7dK9BW0Hs0Pm4Lu-f55R-Zv4kT0ApyuABncfNQUbfU1zT2UdyHe2bOs_6r8AjmOQbQ</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Marcoux, Julien</creator><creator>Robinson, Carol V.</creator><general>Elsevier Inc</general><general>Elsevier (Cell Press)</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7321-7436</orcidid></search><sort><creationdate>20130903</creationdate><title>Twenty Years of Gas Phase Structural Biology</title><author>Marcoux, Julien ; Robinson, Carol V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-638ae0e4ccef3116b76e874a13836ad1aa92126392fd09c9fa21912783040d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>Detergents - chemistry</topic><topic>Drugs</topic><topic>Gas phases</topic><topic>Gases - chemistry</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipids - chemistry</topic><topic>Mass spectra</topic><topic>Membrane Proteins - chemistry</topic><topic>Membranes</topic><topic>Micelles</topic><topic>Molecular Biology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Solubility</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcoux, Julien</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcoux, Julien</au><au>Robinson, Carol V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twenty Years of Gas Phase Structural Biology</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>21</volume><issue>9</issue><spage>1541</spage><epage>1550</epage><pages>1541-1550</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20th anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology. [Display omitted] •History of the development of mass spectrometry for membrane protein complexes•Progress from the first mass spectra to the effects of PTMs and lipid binding•Future perspectives including enhanced resolution of mass spectra and ion mobility Over the last two decades, mass spectrometry and its applications to structural biology have come of age. To mark the 20th anniversary of the journal, Marcoux and Robinson trace the pathway to acceptance of this technique from initial forays into protein ligand interactions to the current work on membrane assemblies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24010713</pmid><doi>10.1016/j.str.2013.08.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7321-7436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2013-09, Vol.21 (9), p.1541-1550
issn 0969-2126
1878-4186
language eng
recordid cdi_hal_primary_oai_HAL_hal_02335558v1
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Binding
Biochemistry, Molecular Biology
Biology
Detergents - chemistry
Drugs
Gas phases
Gases - chemistry
Humans
Life Sciences
Lipids - chemistry
Mass spectra
Membrane Proteins - chemistry
Membranes
Micelles
Molecular Biology
Multiprotein Complexes - chemistry
Protein Binding
Proteins
Solubility
Spectrometry, Mass, Electrospray Ionization
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Structural Biology
title Twenty Years of Gas Phase Structural Biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twenty%20Years%20of%20Gas%20Phase%20Structural%20Biology&rft.jtitle=Structure%20(London)&rft.au=Marcoux,%20Julien&rft.date=2013-09-03&rft.volume=21&rft.issue=9&rft.spage=1541&rft.epage=1550&rft.pages=1541-1550&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2013.08.002&rft_dat=%3Cproquest_hal_p%3E1431298483%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431298483&rft_id=info:pmid/24010713&rft_els_id=S0969212613002931&rfr_iscdi=true