Preconditioned Krylov subspace methods for solving radiative transfer problems with scattering and reflection
Two Krylov subspace methods, the GMRES and the BiCGSTAB, are analyzed for solving the linear systems arising from the mixed finite element discretization of the discrete ordinates radiative transfer equation. To increase their convergence rate and stability, the Jacobi and block Jacobi methods are u...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2019-03, Vol.77 (6), p.1453-1465 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two Krylov subspace methods, the GMRES and the BiCGSTAB, are analyzed for solving the linear systems arising from the mixed finite element discretization of the discrete ordinates radiative transfer equation. To increase their convergence rate and stability, the Jacobi and block Jacobi methods are used as preconditioners for both Krylov subspace methods. Numerical experiments, designed to test the effectiveness of the (preconditioned) GMRES and the BiCGSTAB, are performed on various radiative transfer problems: (i) transparent, (ii) absorption dominant, (iii) scattering dominant, and (iv) with specular reflection. It is observed that the BiCGSTAB is superior to the GMRES, with lower iteration counts, solving times, and memory consumption. In particular, the BiCGSTAB preconditioned by the block Jacobi method performed best amongst the set of other solvers. To better understand the discrete systems for radiative problems (i) to (iv), an eigenvalue spectrum analysis has also been performed. It revealed that the linear system conditioning deteriorates for scattering media problems in comparison to absorbing or transparent media problems. This conditioning further deteriorates when reflection is involved. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2018.09.041 |