Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments

Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2019-06, Vol.11 (6), Article 064053
Hauptverfasser: Kroll, J.G., Borsoi, F., van der Enden, K.L., Uilhoorn, W., de Jong, D., Quintero-Pérez, M., van Woerkom, D.J., Bruno, A., Plissard, S.R., Car, D., Bakkers, E.P.A.M., Cassidy, M.C., Kouwenhoven, L.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To mitigate these effects, we investigate lithographically defined artificial defects in resonators fabricated from Nb-TiN superconducting films. We show that by controlling the vor-tex dynamics, the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors 10 5 at the single-photon power level in perpendicular magnetic fields up to B ⊥ 20 mT and parallel magnetic fields up to B 6 T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an In-Sb nanowire into a field-resilient superconducting resonator and use it to perform fast charge readout of a gate-defined double quantum dot at B = 1 T.
ISSN:2331-7019
2331-7019
DOI:10.1103/PhysRevApplied.11.064053