Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties
The contribution of the cytosolic calcium binding protein calbindin D 28K (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2002-03, Vol.42 (4), p.444-458 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 4 |
container_start_page | 444 |
container_title | Neuropharmacology |
container_volume | 42 |
creator | Jouvenceau, A Potier, B Poindessous-Jazat, F Dutar, P Slama, A Epelbaum, J Billard, J.-M |
description | The contribution of the cytosolic calcium binding protein calbindin D
28K (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca
2+ entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 μM) and of the calcium chelator BAPTA-AM (5 μM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca
2+]
i rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca
2+]
i, due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern. |
doi_str_mv | 10.1016/S0028-3908(01)00202-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02325398v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390801002027</els_id><sourcerecordid>71605077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-13a3006786e908d6f669ad4526568fb44cc541e34316f1b6c5747bd3ac6a9233</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhJ4B8AdFDwBN_xDmhVQsUafmQ2LvlOBNqyDpb26nUf4_TXbXHnmyPHs-8moeQ18A-AAP18Tdjta54y_R7BmflweqqeUJWoBteNUyJp2R1j5yQFyn9ZYwJDfo5OQFopZSgVuTfBbqINiH1gTo7dj70y20KGUOmyf8JfvDOhjzeUjtmjIlutr9oN2capkx_fL9Y04gO93mK1IZ-aeL8vKPuyoaAI93HaY8xe0wvybPBjglfHc9Tsv3yeXt-WW1-fv12vt5UTkiVK-CWM6YarbBE79WgVGt7IWsllR46IZyTApALDmqATjnZiKbruXXKtjXnp-Ts0PbKjmYf_c7GWzNZby7XG7PUWM1ryVt9A4V9d2BLyusZUzY7nxyOow04zck0oJhkTfMoCFpqxWVdQHkAXZxSijjcRwBmFnPmzpxZtBgG5s6cWQa8OQ6Yux32D7-Oqgrw9gjYVHY8RBucTw8cV8C1WgJ8OnBYVnzjMZrkPAaHvS-esukn_0iU_7zIs3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18586352</pqid></control><display><type>article</type><title>Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jouvenceau, A ; Potier, B ; Poindessous-Jazat, F ; Dutar, P ; Slama, A ; Epelbaum, J ; Billard, J.-M</creator><creatorcontrib>Jouvenceau, A ; Potier, B ; Poindessous-Jazat, F ; Dutar, P ; Slama, A ; Epelbaum, J ; Billard, J.-M</creatorcontrib><description>The contribution of the cytosolic calcium binding protein calbindin D
28K (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca
2+ entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 μM) and of the calcium chelator BAPTA-AM (5 μM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca
2+]
i rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca
2+]
i, due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/S0028-3908(01)00202-7</identifier><identifier>PMID: 11955516</identifier><identifier>CODEN: NEPHBW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aminoacid receptors (glycine, glutamate, gaba) ; Animals ; Binding Sites - genetics ; Biological and medical sciences ; Calbindin ; Calbindins ; Calcium binding protein ; Calcium channels ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium Channels - physiology ; Cell receptors ; Cell structures and functions ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Fundamental and applied biological sciences. Psychology ; Glutamate ; Glycine ; Hippocampus ; Life Sciences ; Long-term potentiation ; Long-Term Potentiation - genetics ; Male ; Mice ; Mice, Transgenic ; Molecular and cellular biology ; Neuronal Plasticity - genetics ; Neurons and Cognition ; NMDA receptor ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Receptors, N-Methyl-D-Aspartate - physiology ; S100 Calcium Binding Protein G - genetics ; S100 Calcium Binding Protein G - metabolism ; S100 Calcium Binding Protein G - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuropharmacology, 2002-03, Vol.42 (4), p.444-458</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-13a3006786e908d6f669ad4526568fb44cc541e34316f1b6c5747bd3ac6a9233</citedby><cites>FETCH-LOGICAL-c456t-13a3006786e908d6f669ad4526568fb44cc541e34316f1b6c5747bd3ac6a9233</cites><orcidid>0000-0002-8677-4415 ; 0000-0002-8170-1196 ; 0000-0002-9235-7298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0028390801002027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13613862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11955516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02325398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jouvenceau, A</creatorcontrib><creatorcontrib>Potier, B</creatorcontrib><creatorcontrib>Poindessous-Jazat, F</creatorcontrib><creatorcontrib>Dutar, P</creatorcontrib><creatorcontrib>Slama, A</creatorcontrib><creatorcontrib>Epelbaum, J</creatorcontrib><creatorcontrib>Billard, J.-M</creatorcontrib><title>Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>The contribution of the cytosolic calcium binding protein calbindin D
28K (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca
2+ entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 μM) and of the calcium chelator BAPTA-AM (5 μM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca
2+]
i rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca
2+]
i, due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.</description><subject>Aminoacid receptors (glycine, glutamate, gaba)</subject><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Biological and medical sciences</subject><subject>Calbindin</subject><subject>Calbindins</subject><subject>Calcium binding protein</subject><subject>Calcium channels</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Channels - physiology</subject><subject>Cell receptors</subject><subject>Cell structures and functions</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glutamate</subject><subject>Glycine</subject><subject>Hippocampus</subject><subject>Life Sciences</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular and cellular biology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neurons and Cognition</subject><subject>NMDA receptor</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>S100 Calcium Binding Protein G - genetics</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>S100 Calcium Binding Protein G - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhJ4B8AdFDwBN_xDmhVQsUafmQ2LvlOBNqyDpb26nUf4_TXbXHnmyPHs-8moeQ18A-AAP18Tdjta54y_R7BmflweqqeUJWoBteNUyJp2R1j5yQFyn9ZYwJDfo5OQFopZSgVuTfBbqINiH1gTo7dj70y20KGUOmyf8JfvDOhjzeUjtmjIlutr9oN2capkx_fL9Y04gO93mK1IZ-aeL8vKPuyoaAI93HaY8xe0wvybPBjglfHc9Tsv3yeXt-WW1-fv12vt5UTkiVK-CWM6YarbBE79WgVGt7IWsllR46IZyTApALDmqATjnZiKbruXXKtjXnp-Ts0PbKjmYf_c7GWzNZby7XG7PUWM1ryVt9A4V9d2BLyusZUzY7nxyOow04zck0oJhkTfMoCFpqxWVdQHkAXZxSijjcRwBmFnPmzpxZtBgG5s6cWQa8OQ6Yux32D7-Oqgrw9gjYVHY8RBucTw8cV8C1WgJ8OnBYVnzjMZrkPAaHvS-esukn_0iU_7zIs3Y</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Jouvenceau, A</creator><creator>Potier, B</creator><creator>Poindessous-Jazat, F</creator><creator>Dutar, P</creator><creator>Slama, A</creator><creator>Epelbaum, J</creator><creator>Billard, J.-M</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8677-4415</orcidid><orcidid>https://orcid.org/0000-0002-8170-1196</orcidid><orcidid>https://orcid.org/0000-0002-9235-7298</orcidid></search><sort><creationdate>20020301</creationdate><title>Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties</title><author>Jouvenceau, A ; Potier, B ; Poindessous-Jazat, F ; Dutar, P ; Slama, A ; Epelbaum, J ; Billard, J.-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-13a3006786e908d6f669ad4526568fb44cc541e34316f1b6c5747bd3ac6a9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aminoacid receptors (glycine, glutamate, gaba)</topic><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Biological and medical sciences</topic><topic>Calbindin</topic><topic>Calbindins</topic><topic>Calcium binding protein</topic><topic>Calcium channels</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Channels - physiology</topic><topic>Cell receptors</topic><topic>Cell structures and functions</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glutamate</topic><topic>Glycine</topic><topic>Hippocampus</topic><topic>Life Sciences</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular and cellular biology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neurons and Cognition</topic><topic>NMDA receptor</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>S100 Calcium Binding Protein G - genetics</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>S100 Calcium Binding Protein G - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jouvenceau, A</creatorcontrib><creatorcontrib>Potier, B</creatorcontrib><creatorcontrib>Poindessous-Jazat, F</creatorcontrib><creatorcontrib>Dutar, P</creatorcontrib><creatorcontrib>Slama, A</creatorcontrib><creatorcontrib>Epelbaum, J</creatorcontrib><creatorcontrib>Billard, J.-M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jouvenceau, A</au><au>Potier, B</au><au>Poindessous-Jazat, F</au><au>Dutar, P</au><au>Slama, A</au><au>Epelbaum, J</au><au>Billard, J.-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>42</volume><issue>4</issue><spage>444</spage><epage>458</epage><pages>444-458</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><coden>NEPHBW</coden><abstract>The contribution of the cytosolic calcium binding protein calbindin D
28K (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca
2+ entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 μM) and of the calcium chelator BAPTA-AM (5 μM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca
2+]
i rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca
2+]
i, due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11955516</pmid><doi>10.1016/S0028-3908(01)00202-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8677-4415</orcidid><orcidid>https://orcid.org/0000-0002-8170-1196</orcidid><orcidid>https://orcid.org/0000-0002-9235-7298</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3908 |
ispartof | Neuropharmacology, 2002-03, Vol.42 (4), p.444-458 |
issn | 0028-3908 1873-7064 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02325398v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Aminoacid receptors (glycine, glutamate, gaba) Animals Binding Sites - genetics Biological and medical sciences Calbindin Calbindins Calcium binding protein Calcium channels Calcium Channels - genetics Calcium Channels - metabolism Calcium Channels - physiology Cell receptors Cell structures and functions Central nervous system Central neurotransmission. Neuromudulation. Pathways and receptors Fundamental and applied biological sciences. Psychology Glutamate Glycine Hippocampus Life Sciences Long-term potentiation Long-Term Potentiation - genetics Male Mice Mice, Transgenic Molecular and cellular biology Neuronal Plasticity - genetics Neurons and Cognition NMDA receptor Receptors, N-Methyl-D-Aspartate - genetics Receptors, N-Methyl-D-Aspartate - metabolism Receptors, N-Methyl-D-Aspartate - physiology S100 Calcium Binding Protein G - genetics S100 Calcium Binding Protein G - metabolism S100 Calcium Binding Protein G - physiology Vertebrates: nervous system and sense organs |
title | Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decrease%20in%20calbindin%20content%20significantly%20alters%20LTP%20but%20not%20NMDA%20receptor%20and%20calcium%20channel%20properties&rft.jtitle=Neuropharmacology&rft.au=Jouvenceau,%20A&rft.date=2002-03-01&rft.volume=42&rft.issue=4&rft.spage=444&rft.epage=458&rft.pages=444-458&rft.issn=0028-3908&rft.eissn=1873-7064&rft.coden=NEPHBW&rft_id=info:doi/10.1016/S0028-3908(01)00202-7&rft_dat=%3Cproquest_hal_p%3E71605077%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18586352&rft_id=info:pmid/11955516&rft_els_id=S0028390801002027&rfr_iscdi=true |