Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation

A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mass spectrometry. 2019-05, Vol.54 (5), p.437-448
Hauptverfasser: Bayat, Parisa, Gatineau, David, Lesage, Denis, Marhabaie, Sina, Martinez, Alexandre, Cole, Richard B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 5
container_start_page 437
container_title Journal of mass spectrometry.
container_volume 54
creator Bayat, Parisa
Gatineau, David
Lesage, Denis
Marhabaie, Sina
Martinez, Alexandre
Cole, Richard B.
description A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s−1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32−) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3−) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2−) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.
doi_str_mv 10.1002/jms.4345
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02323750v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225037275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4545-6592a8589466c4085dbe5b84a5bf1a2a5949730cbc54a363898e3233865d70633</originalsourceid><addsrcrecordid>eNp1kc1u1DAURq0KREtB6hMgS93AIq3_Yy-rCmjRIBaFteU4TsYjJ57GyZTZ8QiIR-RJcDplUCuxsn11fHQ_fQCcYHSGESLnqy6dMcr4ATjCSIlCSSmfzfdSFByX7BC8TGmFEFKKiRfgkCKJsEL0CPy67jcujb41o489jA00dvSb3cv1bmi9S7CJA6x9StH6PbeMafz942c75e_Qxm4d3PeM-h6OSwdbk-B6aZKDU_J9C0O8y_C9cJvpEHyaPb6vJ-vqR_JX4HljQnKvH85j8O3D-6-XV8Xiy8fry4tFYRlnvBBcESO5zImEZUjyunK8kszwqsGGGK6YKimyleXMUEGlko4SSqXgdYkEpcfg3c67NEGvB9-ZYauj8frqYqHnGSKZLzna4My-3bHrId7OiXXnk3UhmN7FKWmC8yYlFYxn9PQJuorT0OckmhDCES1Jyf8J7RBTGlyz3wAjPXeqc6d67jSjbx6EU9W5eg_-LTEDxQ6488Ft_yvSnz7f3Av_ADXWrUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225037275</pqid></control><display><type>article</type><title>Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bayat, Parisa ; Gatineau, David ; Lesage, Denis ; Marhabaie, Sina ; Martinez, Alexandre ; Cole, Richard B.</creator><creatorcontrib>Bayat, Parisa ; Gatineau, David ; Lesage, Denis ; Marhabaie, Sina ; Martinez, Alexandre ; Cole, Richard B.</creatorcontrib><description>A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s−1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32−) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3−) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2−) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4345</identifier><identifier>PMID: 30801903</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; Analytical chemistry ; Black body radiation ; blackbody infrared radiative dissociation ; Bonding strength ; Cages ; Calibration ; Carbon dioxide ; Chemical Sciences ; collision induced dissociation ; Collision mortality ; cryptophanes ; Dissociation ; Energy ; Energy of dissociation ; Entropy ; Entropy of activation ; Functional groups ; host‐guest chemistry ; Interactions ; Ions ; or physical chemistry ; Organic chemistry ; Parameters ; Phosphates ; Residence time ; Sulfur trioxide ; Temperature requirements ; Theoretical and ; Vapor phases ; Zinc</subject><ispartof>Journal of mass spectrometry., 2019-05, Vol.54 (5), p.437-448</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4545-6592a8589466c4085dbe5b84a5bf1a2a5949730cbc54a363898e3233865d70633</citedby><cites>FETCH-LOGICAL-c4545-6592a8589466c4085dbe5b84a5bf1a2a5949730cbc54a363898e3233865d70633</cites><orcidid>0000-0003-3453-5006 ; 0000-0002-6745-5734 ; 0000-0001-8195-8840 ; 0000-0002-9637-3308 ; 0000-0002-6893-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjms.4345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjms.4345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30801903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02323750$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayat, Parisa</creatorcontrib><creatorcontrib>Gatineau, David</creatorcontrib><creatorcontrib>Lesage, Denis</creatorcontrib><creatorcontrib>Marhabaie, Sina</creatorcontrib><creatorcontrib>Martinez, Alexandre</creatorcontrib><creatorcontrib>Cole, Richard B.</creatorcontrib><title>Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s−1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32−) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3−) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2−) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.</description><subject>Activation energy</subject><subject>Analytical chemistry</subject><subject>Black body radiation</subject><subject>blackbody infrared radiative dissociation</subject><subject>Bonding strength</subject><subject>Cages</subject><subject>Calibration</subject><subject>Carbon dioxide</subject><subject>Chemical Sciences</subject><subject>collision induced dissociation</subject><subject>Collision mortality</subject><subject>cryptophanes</subject><subject>Dissociation</subject><subject>Energy</subject><subject>Energy of dissociation</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>Functional groups</subject><subject>host‐guest chemistry</subject><subject>Interactions</subject><subject>Ions</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Phosphates</subject><subject>Residence time</subject><subject>Sulfur trioxide</subject><subject>Temperature requirements</subject><subject>Theoretical and</subject><subject>Vapor phases</subject><subject>Zinc</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURq0KREtB6hMgS93AIq3_Yy-rCmjRIBaFteU4TsYjJ57GyZTZ8QiIR-RJcDplUCuxsn11fHQ_fQCcYHSGESLnqy6dMcr4ATjCSIlCSSmfzfdSFByX7BC8TGmFEFKKiRfgkCKJsEL0CPy67jcujb41o489jA00dvSb3cv1bmi9S7CJA6x9StH6PbeMafz942c75e_Qxm4d3PeM-h6OSwdbk-B6aZKDU_J9C0O8y_C9cJvpEHyaPb6vJ-vqR_JX4HljQnKvH85j8O3D-6-XV8Xiy8fry4tFYRlnvBBcESO5zImEZUjyunK8kszwqsGGGK6YKimyleXMUEGlko4SSqXgdYkEpcfg3c67NEGvB9-ZYauj8frqYqHnGSKZLzna4My-3bHrId7OiXXnk3UhmN7FKWmC8yYlFYxn9PQJuorT0OckmhDCES1Jyf8J7RBTGlyz3wAjPXeqc6d67jSjbx6EU9W5eg_-LTEDxQ6488Ft_yvSnz7f3Av_ADXWrUU</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Bayat, Parisa</creator><creator>Gatineau, David</creator><creator>Lesage, Denis</creator><creator>Marhabaie, Sina</creator><creator>Martinez, Alexandre</creator><creator>Cole, Richard B.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3453-5006</orcidid><orcidid>https://orcid.org/0000-0002-6745-5734</orcidid><orcidid>https://orcid.org/0000-0001-8195-8840</orcidid><orcidid>https://orcid.org/0000-0002-9637-3308</orcidid><orcidid>https://orcid.org/0000-0002-6893-0138</orcidid></search><sort><creationdate>201905</creationdate><title>Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation</title><author>Bayat, Parisa ; Gatineau, David ; Lesage, Denis ; Marhabaie, Sina ; Martinez, Alexandre ; Cole, Richard B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4545-6592a8589466c4085dbe5b84a5bf1a2a5949730cbc54a363898e3233865d70633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Analytical chemistry</topic><topic>Black body radiation</topic><topic>blackbody infrared radiative dissociation</topic><topic>Bonding strength</topic><topic>Cages</topic><topic>Calibration</topic><topic>Carbon dioxide</topic><topic>Chemical Sciences</topic><topic>collision induced dissociation</topic><topic>Collision mortality</topic><topic>cryptophanes</topic><topic>Dissociation</topic><topic>Energy</topic><topic>Energy of dissociation</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>Functional groups</topic><topic>host‐guest chemistry</topic><topic>Interactions</topic><topic>Ions</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Phosphates</topic><topic>Residence time</topic><topic>Sulfur trioxide</topic><topic>Temperature requirements</topic><topic>Theoretical and</topic><topic>Vapor phases</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayat, Parisa</creatorcontrib><creatorcontrib>Gatineau, David</creatorcontrib><creatorcontrib>Lesage, Denis</creatorcontrib><creatorcontrib>Marhabaie, Sina</creatorcontrib><creatorcontrib>Martinez, Alexandre</creatorcontrib><creatorcontrib>Cole, Richard B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayat, Parisa</au><au>Gatineau, David</au><au>Lesage, Denis</au><au>Marhabaie, Sina</au><au>Martinez, Alexandre</au><au>Cole, Richard B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2019-05</date><risdate>2019</risdate><volume>54</volume><issue>5</issue><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s−1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32−) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3−) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2−) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30801903</pmid><doi>10.1002/jms.4345</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3453-5006</orcidid><orcidid>https://orcid.org/0000-0002-6745-5734</orcidid><orcidid>https://orcid.org/0000-0001-8195-8840</orcidid><orcidid>https://orcid.org/0000-0002-9637-3308</orcidid><orcidid>https://orcid.org/0000-0002-6893-0138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2019-05, Vol.54 (5), p.437-448
issn 1076-5174
1096-9888
language eng
recordid cdi_hal_primary_oai_HAL_hal_02323750v1
source Wiley Online Library Journals Frontfile Complete
subjects Activation energy
Analytical chemistry
Black body radiation
blackbody infrared radiative dissociation
Bonding strength
Cages
Calibration
Carbon dioxide
Chemical Sciences
collision induced dissociation
Collision mortality
cryptophanes
Dissociation
Energy
Energy of dissociation
Entropy
Entropy of activation
Functional groups
host‐guest chemistry
Interactions
Ions
or physical chemistry
Organic chemistry
Parameters
Phosphates
Residence time
Sulfur trioxide
Temperature requirements
Theoretical and
Vapor phases
Zinc
title Investigation of activation energies for dissociation of host‐guest complexes in the gas phase using low‐energy collision induced dissociation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20activation%20energies%20for%20dissociation%20of%20host%E2%80%90guest%20complexes%20in%20the%20gas%20phase%20using%20low%E2%80%90energy%20collision%20induced%20dissociation&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Bayat,%20Parisa&rft.date=2019-05&rft.volume=54&rft.issue=5&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4345&rft_dat=%3Cproquest_hal_p%3E2225037275%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225037275&rft_id=info:pmid/30801903&rfr_iscdi=true