The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles
Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2019-08, Vol.46 (16), p.9573-9582 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9582 |
---|---|
container_issue | 16 |
container_start_page | 9573 |
container_title | Geophysical research letters |
container_volume | 46 |
creator | Laurencin, M. Marcaillou, B. Graindorge, D. Lebrun, J.‐F. Klingelhoefer, F. Boucard, M. Laigle, M. Lallemand, S. Schenini, L. |
description | Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐ to 30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.
Plain Language Summary
Lithospheric plates are frequently bounded by subduction zones where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the margin, its resulting tectonic deformation is generally due to margin‐normal and margin‐parallel components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired marine geophysical data during ANTITHESIS cruises (2014–2016) to image the seafloor and the crustal structure. We place a particular emphasis on the strike‐slip Bunce Fault, which extends over ~850 km, including a newly discovered 350‐km segment, 20–30 km landward from the trench. Although long strike‐slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to the trench is unprecedented. We conclude that the mechanical discontinuity between the sedimentary wedge and a more rigid backstop and the sharp increase in obliquity is likely to control the location of the trench‐parallel, strike‐slip deformation north of the Anegada Passage when strain partitioning to the south may be small or taken up in more diffuse pattern.
Key Points
ANTITHESIS cruises highlight the SE extent of the Bunce Fault where it anastomoses in the prism at the change of obliquity o |
doi_str_mv | 10.1029/2019GL083490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02318584v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299730955</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4019-edf6832d63354a0f6a976869c49f9f7df24429a0bc1dceb50e40c5403b2c561a3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgCs7pnT8g4JVg9eSrbS7ncJ1QVHReh6xNXUZNZ9Iq-_dmTMQrr84HD4fDi9A5gWsCVN5QILIoIWdcwgEaEcl5kgNkh2gEIGNPs_QYnYSwBgAGjIxQsVgZfDu4yuCZHtoea1fjl95r6_CT9r3tbeese8Nx7iN96Hws3uHShGA8nrjetq0Jp-io0W0wZz91jF5nd4vpPCkfi_vppEw0j88lpm7SnNE6ZUxwDU2qZZbmqay4bGST1Q3lnEoNy4rUlVkKMBwqwYEtaSVSotkYXe7vrnSrNt6-a79VnbZqPinVbgeUkVzk_JNEe7G3G999DCb0at0N3sX3FKVSZgykEFFd7VXluxC8aX7PElC7WNXfWCOne_5lW7P916riuRSSC8m-AQygdiY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299730955</pqid></control><display><type>article</type><title>The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Laurencin, M. ; Marcaillou, B. ; Graindorge, D. ; Lebrun, J.‐F. ; Klingelhoefer, F. ; Boucard, M. ; Laigle, M. ; Lallemand, S. ; Schenini, L.</creator><creatorcontrib>Laurencin, M. ; Marcaillou, B. ; Graindorge, D. ; Lebrun, J.‐F. ; Klingelhoefer, F. ; Boucard, M. ; Laigle, M. ; Lallemand, S. ; Schenini, L.</creatorcontrib><description>Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐ to 30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.
Plain Language Summary
Lithospheric plates are frequently bounded by subduction zones where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the margin, its resulting tectonic deformation is generally due to margin‐normal and margin‐parallel components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired marine geophysical data during ANTITHESIS cruises (2014–2016) to image the seafloor and the crustal structure. We place a particular emphasis on the strike‐slip Bunce Fault, which extends over ~850 km, including a newly discovered 350‐km segment, 20–30 km landward from the trench. Although long strike‐slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to the trench is unprecedented. We conclude that the mechanical discontinuity between the sedimentary wedge and a more rigid backstop and the sharp increase in obliquity is likely to control the location of the trench‐parallel, strike‐slip deformation north of the Anegada Passage when strain partitioning to the south may be small or taken up in more diffuse pattern.
Key Points
ANTITHESIS cruises highlight the SE extent of the Bunce Fault where it anastomoses in the prism at the change of obliquity of convergence
The sinistral strike‐slip Bunce Fault develops along a rheological discontinuity at the prism backstop at 30 km from the trench
A synthesize of structures resulting from strain partitioning observed in the Greater and Northern Lesser Antilles is proposed</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL083490</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Accretion ; Convergence ; Cruises ; Crustal structure ; Data acquisition ; Deformation ; Discontinuity ; Earth Sciences ; Geological faults ; Geological time ; Geophysical data ; Geophysics ; Image acquisition ; Ocean floor ; Oceanic trenches ; Partitioning ; Plate convergence ; Plates ; Plates (tectonics) ; Sciences of the Universe ; Seamounts ; Slip ; Strain ; Subduction ; Subduction (geology) ; Subduction zones ; Tectonics ; Wedges</subject><ispartof>Geophysical research letters, 2019-08, Vol.46 (16), p.9573-9582</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4019-edf6832d63354a0f6a976869c49f9f7df24429a0bc1dceb50e40c5403b2c561a3</citedby><cites>FETCH-LOGICAL-a4019-edf6832d63354a0f6a976869c49f9f7df24429a0bc1dceb50e40c5403b2c561a3</cites><orcidid>0000-0002-0494-9550 ; 0000-0001-5838-0577 ; 0000-0003-2619-3341 ; 0000-0002-7376-4357 ; 0000-0003-1924-9423 ; 0000-0002-4117-6411 ; 0000-0003-3939-0950 ; 0000-0002-4312-0745 ; 0000-0002-2569-6409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL083490$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL083490$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-02318584$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurencin, M.</creatorcontrib><creatorcontrib>Marcaillou, B.</creatorcontrib><creatorcontrib>Graindorge, D.</creatorcontrib><creatorcontrib>Lebrun, J.‐F.</creatorcontrib><creatorcontrib>Klingelhoefer, F.</creatorcontrib><creatorcontrib>Boucard, M.</creatorcontrib><creatorcontrib>Laigle, M.</creatorcontrib><creatorcontrib>Lallemand, S.</creatorcontrib><creatorcontrib>Schenini, L.</creatorcontrib><title>The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles</title><title>Geophysical research letters</title><description>Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐ to 30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.
Plain Language Summary
Lithospheric plates are frequently bounded by subduction zones where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the margin, its resulting tectonic deformation is generally due to margin‐normal and margin‐parallel components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired marine geophysical data during ANTITHESIS cruises (2014–2016) to image the seafloor and the crustal structure. We place a particular emphasis on the strike‐slip Bunce Fault, which extends over ~850 km, including a newly discovered 350‐km segment, 20–30 km landward from the trench. Although long strike‐slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to the trench is unprecedented. We conclude that the mechanical discontinuity between the sedimentary wedge and a more rigid backstop and the sharp increase in obliquity is likely to control the location of the trench‐parallel, strike‐slip deformation north of the Anegada Passage when strain partitioning to the south may be small or taken up in more diffuse pattern.
Key Points
ANTITHESIS cruises highlight the SE extent of the Bunce Fault where it anastomoses in the prism at the change of obliquity of convergence
The sinistral strike‐slip Bunce Fault develops along a rheological discontinuity at the prism backstop at 30 km from the trench
A synthesize of structures resulting from strain partitioning observed in the Greater and Northern Lesser Antilles is proposed</description><subject>Accretion</subject><subject>Convergence</subject><subject>Cruises</subject><subject>Crustal structure</subject><subject>Data acquisition</subject><subject>Deformation</subject><subject>Discontinuity</subject><subject>Earth Sciences</subject><subject>Geological faults</subject><subject>Geological time</subject><subject>Geophysical data</subject><subject>Geophysics</subject><subject>Image acquisition</subject><subject>Ocean floor</subject><subject>Oceanic trenches</subject><subject>Partitioning</subject><subject>Plate convergence</subject><subject>Plates</subject><subject>Plates (tectonics)</subject><subject>Sciences of the Universe</subject><subject>Seamounts</subject><subject>Slip</subject><subject>Strain</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Tectonics</subject><subject>Wedges</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgCs7pnT8g4JVg9eSrbS7ncJ1QVHReh6xNXUZNZ9Iq-_dmTMQrr84HD4fDi9A5gWsCVN5QILIoIWdcwgEaEcl5kgNkh2gEIGNPs_QYnYSwBgAGjIxQsVgZfDu4yuCZHtoea1fjl95r6_CT9r3tbeese8Nx7iN96Hws3uHShGA8nrjetq0Jp-io0W0wZz91jF5nd4vpPCkfi_vppEw0j88lpm7SnNE6ZUxwDU2qZZbmqay4bGST1Q3lnEoNy4rUlVkKMBwqwYEtaSVSotkYXe7vrnSrNt6-a79VnbZqPinVbgeUkVzk_JNEe7G3G999DCb0at0N3sX3FKVSZgykEFFd7VXluxC8aX7PElC7WNXfWCOne_5lW7P916riuRSSC8m-AQygdiY</recordid><startdate>20190828</startdate><enddate>20190828</enddate><creator>Laurencin, M.</creator><creator>Marcaillou, B.</creator><creator>Graindorge, D.</creator><creator>Lebrun, J.‐F.</creator><creator>Klingelhoefer, F.</creator><creator>Boucard, M.</creator><creator>Laigle, M.</creator><creator>Lallemand, S.</creator><creator>Schenini, L.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0494-9550</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0003-2619-3341</orcidid><orcidid>https://orcid.org/0000-0002-7376-4357</orcidid><orcidid>https://orcid.org/0000-0003-1924-9423</orcidid><orcidid>https://orcid.org/0000-0002-4117-6411</orcidid><orcidid>https://orcid.org/0000-0003-3939-0950</orcidid><orcidid>https://orcid.org/0000-0002-4312-0745</orcidid><orcidid>https://orcid.org/0000-0002-2569-6409</orcidid></search><sort><creationdate>20190828</creationdate><title>The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles</title><author>Laurencin, M. ; Marcaillou, B. ; Graindorge, D. ; Lebrun, J.‐F. ; Klingelhoefer, F. ; Boucard, M. ; Laigle, M. ; Lallemand, S. ; Schenini, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4019-edf6832d63354a0f6a976869c49f9f7df24429a0bc1dceb50e40c5403b2c561a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion</topic><topic>Convergence</topic><topic>Cruises</topic><topic>Crustal structure</topic><topic>Data acquisition</topic><topic>Deformation</topic><topic>Discontinuity</topic><topic>Earth Sciences</topic><topic>Geological faults</topic><topic>Geological time</topic><topic>Geophysical data</topic><topic>Geophysics</topic><topic>Image acquisition</topic><topic>Ocean floor</topic><topic>Oceanic trenches</topic><topic>Partitioning</topic><topic>Plate convergence</topic><topic>Plates</topic><topic>Plates (tectonics)</topic><topic>Sciences of the Universe</topic><topic>Seamounts</topic><topic>Slip</topic><topic>Strain</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Tectonics</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurencin, M.</creatorcontrib><creatorcontrib>Marcaillou, B.</creatorcontrib><creatorcontrib>Graindorge, D.</creatorcontrib><creatorcontrib>Lebrun, J.‐F.</creatorcontrib><creatorcontrib>Klingelhoefer, F.</creatorcontrib><creatorcontrib>Boucard, M.</creatorcontrib><creatorcontrib>Laigle, M.</creatorcontrib><creatorcontrib>Lallemand, S.</creatorcontrib><creatorcontrib>Schenini, L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurencin, M.</au><au>Marcaillou, B.</au><au>Graindorge, D.</au><au>Lebrun, J.‐F.</au><au>Klingelhoefer, F.</au><au>Boucard, M.</au><au>Laigle, M.</au><au>Lallemand, S.</au><au>Schenini, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles</atitle><jtitle>Geophysical research letters</jtitle><date>2019-08-28</date><risdate>2019</risdate><volume>46</volume><issue>16</issue><spage>9573</spage><epage>9582</epage><pages>9573-9582</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐ to 30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles.
Plain Language Summary
Lithospheric plates are frequently bounded by subduction zones where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the margin, its resulting tectonic deformation is generally due to margin‐normal and margin‐parallel components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired marine geophysical data during ANTITHESIS cruises (2014–2016) to image the seafloor and the crustal structure. We place a particular emphasis on the strike‐slip Bunce Fault, which extends over ~850 km, including a newly discovered 350‐km segment, 20–30 km landward from the trench. Although long strike‐slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to the trench is unprecedented. We conclude that the mechanical discontinuity between the sedimentary wedge and a more rigid backstop and the sharp increase in obliquity is likely to control the location of the trench‐parallel, strike‐slip deformation north of the Anegada Passage when strain partitioning to the south may be small or taken up in more diffuse pattern.
Key Points
ANTITHESIS cruises highlight the SE extent of the Bunce Fault where it anastomoses in the prism at the change of obliquity of convergence
The sinistral strike‐slip Bunce Fault develops along a rheological discontinuity at the prism backstop at 30 km from the trench
A synthesize of structures resulting from strain partitioning observed in the Greater and Northern Lesser Antilles is proposed</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2019GL083490</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0494-9550</orcidid><orcidid>https://orcid.org/0000-0001-5838-0577</orcidid><orcidid>https://orcid.org/0000-0003-2619-3341</orcidid><orcidid>https://orcid.org/0000-0002-7376-4357</orcidid><orcidid>https://orcid.org/0000-0003-1924-9423</orcidid><orcidid>https://orcid.org/0000-0002-4117-6411</orcidid><orcidid>https://orcid.org/0000-0003-3939-0950</orcidid><orcidid>https://orcid.org/0000-0002-4312-0745</orcidid><orcidid>https://orcid.org/0000-0002-2569-6409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2019-08, Vol.46 (16), p.9573-9582 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02318584v1 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accretion Convergence Cruises Crustal structure Data acquisition Deformation Discontinuity Earth Sciences Geological faults Geological time Geophysical data Geophysics Image acquisition Ocean floor Oceanic trenches Partitioning Plate convergence Plates Plates (tectonics) Sciences of the Universe Seamounts Slip Strain Subduction Subduction (geology) Subduction zones Tectonics Wedges |
title | The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bunce%20Fault%20and%20Strain%20Partitioning%20in%20the%20Northern%20Lesser%20Antilles&rft.jtitle=Geophysical%20research%20letters&rft.au=Laurencin,%20M.&rft.date=2019-08-28&rft.volume=46&rft.issue=16&rft.spage=9573&rft.epage=9582&rft.pages=9573-9582&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL083490&rft_dat=%3Cproquest_hal_p%3E2299730955%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299730955&rft_id=info:pmid/&rfr_iscdi=true |