Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production

The aim of this study was to develop a neural network model to predict the productivity of an ultrafiltration pilot plant, treating surface water to produce drinking water and operated with sequential backwashes. The model had to predict long-term performances of the pilot plant, it means to conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2000-12, Vol.131 (1), p.353-362
Hauptverfasser: Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., Laîné, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 1
container_start_page 353
container_title Desalination
container_volume 131
creator Delgrange-Vincent, N.
Cabassud, C.
Cabassud, M.
Durand-Bourlier, L.
Laîné, J.M.
description The aim of this study was to develop a neural network model to predict the productivity of an ultrafiltration pilot plant, treating surface water to produce drinking water and operated with sequential backwashes. The model had to predict long-term performances of the pilot plant, it means to consider both reversible and irreversible fouling. The model had also to take into account a minimum number of parameters. On site experiments were performed to constitute the learning and validation databases. The developed model consists in two interconnected recurrent neural networks. It allows predicting satisfactorily the filtration performances of the experimental pilot plant for different resource water quality and changing operating conditions.
doi_str_mv 10.1016/S0011-9164(00)90034-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02318172v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916400900341</els_id><sourcerecordid>29426958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a245c427986dbbff587e0f090373c4902bea5537596c0bc06706816da8dad7643</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRcK3-BCEgiL0YPfmYZHIlpVQrLHqhXodMPmzc2aQmM10K_ngzs2Vv601CznnOe17yNs1rDO8xYP7hOwDGrcScvQM4lwCUtfhJs8G9oC1jnD1tNifkefOilN_1SSSlm-bvVzdnPaLopkPKu4J8ymhM8ReaXN6j2-xsMFNIESVfe_MYaktHiwZtdgddbpDzPpjgorlHIaJ5nLL2YTnXqUXO5hB3y9xBV9Gqmey8ar5snnk9Fvfq4T5rfn66-nF53W6_ff5yebFtDeNkajVhnWFEyJ7bYfC-64UDDxKooIZJIIPTXUdFJ7mBwQAXwHvMre6ttoIzetacH3Vv9Khuc9jrfK-SDur6YquWGhCKeyzIHa7s2yNbbf6ZXZnUPhTjxlFHl-aiiBQUY2D_ATLCZdc_CmLRY6C0q2B3BE1OpWTnT14xqCVptSatlhgVgFqTVovlNw8LdDF69FlHE8ppuCccS16pj0fK1Z--Cy6rssZWA87OTMqm8Mief_BXvS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17810335</pqid></control><display><type>article</type><title>Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production</title><source>Elsevier ScienceDirect Journals</source><creator>Delgrange-Vincent, N. ; Cabassud, C. ; Cabassud, M. ; Durand-Bourlier, L. ; Laîné, J.M.</creator><creatorcontrib>Delgrange-Vincent, N. ; Cabassud, C. ; Cabassud, M. ; Durand-Bourlier, L. ; Laîné, J.M.</creatorcontrib><description>The aim of this study was to develop a neural network model to predict the productivity of an ultrafiltration pilot plant, treating surface water to produce drinking water and operated with sequential backwashes. The model had to predict long-term performances of the pilot plant, it means to consider both reversible and irreversible fouling. The model had also to take into account a minimum number of parameters. On site experiments were performed to constitute the learning and validation databases. The developed model consists in two interconnected recurrent neural networks. It allows predicting satisfactorily the filtration performances of the experimental pilot plant for different resource water quality and changing operating conditions.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/S0011-9164(00)90034-1</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical and Process Engineering ; Chemical engineering ; Drinking water and swimming-pool water. Desalination ; Drinking water production ; Engineering Sciences ; Environmental Engineering ; Environmental Sciences ; Exact sciences and technology ; Fouling ; Long-term modelling ; Membrane separation (reverse osmosis, dialysis...) ; Neural networks ; Pollution ; Ultrafiltration ; Water treatment and pollution</subject><ispartof>Desalination, 2000-12, Vol.131 (1), p.353-362</ispartof><rights>2000</rights><rights>2001 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a245c427986dbbff587e0f090373c4902bea5537596c0bc06706816da8dad7643</citedby><cites>FETCH-LOGICAL-c462t-a245c427986dbbff587e0f090373c4902bea5537596c0bc06706816da8dad7643</cites><orcidid>0000-0001-7554-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0011-9164(00)90034-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,777,781,786,787,882,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=826196$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02318172$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgrange-Vincent, N.</creatorcontrib><creatorcontrib>Cabassud, C.</creatorcontrib><creatorcontrib>Cabassud, M.</creatorcontrib><creatorcontrib>Durand-Bourlier, L.</creatorcontrib><creatorcontrib>Laîné, J.M.</creatorcontrib><title>Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production</title><title>Desalination</title><description>The aim of this study was to develop a neural network model to predict the productivity of an ultrafiltration pilot plant, treating surface water to produce drinking water and operated with sequential backwashes. The model had to predict long-term performances of the pilot plant, it means to consider both reversible and irreversible fouling. The model had also to take into account a minimum number of parameters. On site experiments were performed to constitute the learning and validation databases. The developed model consists in two interconnected recurrent neural networks. It allows predicting satisfactorily the filtration performances of the experimental pilot plant for different resource water quality and changing operating conditions.</description><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Drinking water production</subject><subject>Engineering Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fouling</subject><subject>Long-term modelling</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Neural networks</subject><subject>Pollution</subject><subject>Ultrafiltration</subject><subject>Water treatment and pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhgdRcK3-BCEgiL0YPfmYZHIlpVQrLHqhXodMPmzc2aQmM10K_ngzs2Vv601CznnOe17yNs1rDO8xYP7hOwDGrcScvQM4lwCUtfhJs8G9oC1jnD1tNifkefOilN_1SSSlm-bvVzdnPaLopkPKu4J8ymhM8ReaXN6j2-xsMFNIESVfe_MYaktHiwZtdgddbpDzPpjgorlHIaJ5nLL2YTnXqUXO5hB3y9xBV9Gqmey8ar5snnk9Fvfq4T5rfn66-nF53W6_ff5yebFtDeNkajVhnWFEyJ7bYfC-64UDDxKooIZJIIPTXUdFJ7mBwQAXwHvMre6ttoIzetacH3Vv9Khuc9jrfK-SDur6YquWGhCKeyzIHa7s2yNbbf6ZXZnUPhTjxlFHl-aiiBQUY2D_ATLCZdc_CmLRY6C0q2B3BE1OpWTnT14xqCVptSatlhgVgFqTVovlNw8LdDF69FlHE8ppuCccS16pj0fK1Z--Cy6rssZWA87OTMqm8Mief_BXvS4</recordid><startdate>20001220</startdate><enddate>20001220</enddate><creator>Delgrange-Vincent, N.</creator><creator>Cabassud, C.</creator><creator>Cabassud, M.</creator><creator>Durand-Bourlier, L.</creator><creator>Laîné, J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7554-8490</orcidid></search><sort><creationdate>20001220</creationdate><title>Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production</title><author>Delgrange-Vincent, N. ; Cabassud, C. ; Cabassud, M. ; Durand-Bourlier, L. ; Laîné, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a245c427986dbbff587e0f090373c4902bea5537596c0bc06706816da8dad7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Drinking water production</topic><topic>Engineering Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fouling</topic><topic>Long-term modelling</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Neural networks</topic><topic>Pollution</topic><topic>Ultrafiltration</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgrange-Vincent, N.</creatorcontrib><creatorcontrib>Cabassud, C.</creatorcontrib><creatorcontrib>Cabassud, M.</creatorcontrib><creatorcontrib>Durand-Bourlier, L.</creatorcontrib><creatorcontrib>Laîné, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgrange-Vincent, N.</au><au>Cabassud, C.</au><au>Cabassud, M.</au><au>Durand-Bourlier, L.</au><au>Laîné, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production</atitle><jtitle>Desalination</jtitle><date>2000-12-20</date><risdate>2000</risdate><volume>131</volume><issue>1</issue><spage>353</spage><epage>362</epage><pages>353-362</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>The aim of this study was to develop a neural network model to predict the productivity of an ultrafiltration pilot plant, treating surface water to produce drinking water and operated with sequential backwashes. The model had to predict long-term performances of the pilot plant, it means to consider both reversible and irreversible fouling. The model had also to take into account a minimum number of parameters. On site experiments were performed to constitute the learning and validation databases. The developed model consists in two interconnected recurrent neural networks. It allows predicting satisfactorily the filtration performances of the experimental pilot plant for different resource water quality and changing operating conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0011-9164(00)90034-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7554-8490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2000-12, Vol.131 (1), p.353-362
issn 0011-9164
1873-4464
language eng
recordid cdi_hal_primary_oai_HAL_hal_02318172v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical and Process Engineering
Chemical engineering
Drinking water and swimming-pool water. Desalination
Drinking water production
Engineering Sciences
Environmental Engineering
Environmental Sciences
Exact sciences and technology
Fouling
Long-term modelling
Membrane separation (reverse osmosis, dialysis...)
Neural networks
Pollution
Ultrafiltration
Water treatment and pollution
title Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20for%20long%20term%20prediction%20of%20fouling%20and%20backwash%20efficiency%20in%20ultrafiltration%20for%20drinking%20water%20production&rft.jtitle=Desalination&rft.au=Delgrange-Vincent,%20N.&rft.date=2000-12-20&rft.volume=131&rft.issue=1&rft.spage=353&rft.epage=362&rft.pages=353-362&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/S0011-9164(00)90034-1&rft_dat=%3Cproquest_hal_p%3E29426958%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17810335&rft_id=info:pmid/&rft_els_id=S0011916400900341&rfr_iscdi=true