optical method for in situ characterization of fouling during filtration

In dead-end ultrafiltration, in situ characterization of fouling is of great importance to be able to evaluate cake properties during filtration runs. Moreover, local information is necessary to analyze and model the basic mechanisms involved in deposit formation. Many studies have investigated cake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2007-09, Vol.53 (9), p.2265-2274
Hauptverfasser: Mendret, J, Guigui, C, Schmitz, P, Cabassud, C, Duru, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2274
container_issue 9
container_start_page 2265
container_title AIChE journal
container_volume 53
creator Mendret, J
Guigui, C
Schmitz, P
Cabassud, C
Duru, P
description In dead-end ultrafiltration, in situ characterization of fouling is of great importance to be able to evaluate cake properties during filtration runs. Moreover, local information is necessary to analyze and model the basic mechanisms involved in deposit formation. Many studies have investigated cake formation on flat-sheet membranes but there is a lack of methods suitable for confined geometries such as inside-out hollow-fiber membranes. This study focuses on development and validation of an optical method using a laser sheet for in situ cake characterization in a narrow channel. The method enables the measurement of time-variations of cross-section cake thickness ranging from 10 μm to hundreds of micrometers with a 3 μm resolution and a 2.5 μm standard deviation. The reproducibility of the results and the order of magnitude are discussed on the basis of experimental results for clay suspensions. Limitations of the method are investigated; in the range of 0-2 g/l for clay suspensions, suspension concentration has no effect. Finally, future applications of the method as a tool for dead-end fouling characterization are considered. © 2007 American Institute of Chemical Engineers AIChE J, 2007
doi_str_mv 10.1002/aic.11257
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02318000v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319841221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5197-174c1f07b50391de6c818979bd60acd75a23b8ebed269bf23ebd0d1a235f2fc3</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EEkvhwC8gQgKph7Qz9jqOj6sV7FasyoHycbMcx-66ZOPFTqDl1-NtSishcRrNzDPvzLyEvEQ4QQB6qr05QaRcPCIz5HNRcgn8MZkBAJa5gE_Js5SuckZFTWdkHfaDN7ordnbYhrZwIRa-L5IfxsJsddRmsNH_1oMPfRFc7o-d7y-LdoyH4Hw3xNvmc_LE6S7ZF3fxiFy8f3exXJebj6uz5WJTGo5SlCjmBh2IhgOT2NrK1FhLIZu2Am1awTVlTW0b29JKNo4y27TQYq5yR51hR-R4kt3qTu2j3-l4o4L2ar3YqEMNKMM6f_sTM_t2Yvcx_BhtGtTOJ2O7Tvc2jEkxgDlyJjL4-h_wKoyxz28olJLVInv1sNnEkFK07n49gjp4r7L36tb7zL65E9Qpm-ui7o1PDwN1Vq3qw4WnE_fLd_bm_4Jqcbb8q1xOEz4N9vp-QsfvqhJMcPX1fKVW8AG-rJff1HnmX02800Hpy5iv-PyJAubfhRRVJdkf90upig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199387278</pqid></control><display><type>article</type><title>optical method for in situ characterization of fouling during filtration</title><source>Access via Wiley Online Library</source><creator>Mendret, J ; Guigui, C ; Schmitz, P ; Cabassud, C ; Duru, P</creator><creatorcontrib>Mendret, J ; Guigui, C ; Schmitz, P ; Cabassud, C ; Duru, P</creatorcontrib><description>In dead-end ultrafiltration, in situ characterization of fouling is of great importance to be able to evaluate cake properties during filtration runs. Moreover, local information is necessary to analyze and model the basic mechanisms involved in deposit formation. Many studies have investigated cake formation on flat-sheet membranes but there is a lack of methods suitable for confined geometries such as inside-out hollow-fiber membranes. This study focuses on development and validation of an optical method using a laser sheet for in situ cake characterization in a narrow channel. The method enables the measurement of time-variations of cross-section cake thickness ranging from 10 μm to hundreds of micrometers with a 3 μm resolution and a 2.5 μm standard deviation. The reproducibility of the results and the order of magnitude are discussed on the basis of experimental results for clay suspensions. Limitations of the method are investigated; in the range of 0-2 g/l for clay suspensions, suspension concentration has no effect. Finally, future applications of the method as a tool for dead-end fouling characterization are considered. © 2007 American Institute of Chemical Engineers AIChE J, 2007</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11257</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical and Process Engineering ; Chemical engineering ; dead-end ultrafiltration ; Engineering Sciences ; Exact sciences and technology ; Filtration ; hollow-fiber ; in situ measurement ; Liquid-liquid and fluid-solid mechanical separations ; Membrane separation ; Membrane separation (reverse osmosis, dialysis...) ; membranes ; optical method ; Optics ; particle fouling ; Sedimentation &amp; deposition ; Standard deviation</subject><ispartof>AIChE journal, 2007-09, Vol.53 (9), p.2265-2274</ispartof><rights>Copyright © 2007 American Institute of Chemical Engineers (AIChE)</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Sep 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5197-174c1f07b50391de6c818979bd60acd75a23b8ebed269bf23ebd0d1a235f2fc3</citedby><cites>FETCH-LOGICAL-c5197-174c1f07b50391de6c818979bd60acd75a23b8ebed269bf23ebd0d1a235f2fc3</cites><orcidid>0000-0002-9171-8266 ; 0000-0001-7554-8490 ; 0009-0007-1446-3638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11257$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11257$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18993681$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02318000$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendret, J</creatorcontrib><creatorcontrib>Guigui, C</creatorcontrib><creatorcontrib>Schmitz, P</creatorcontrib><creatorcontrib>Cabassud, C</creatorcontrib><creatorcontrib>Duru, P</creatorcontrib><title>optical method for in situ characterization of fouling during filtration</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>In dead-end ultrafiltration, in situ characterization of fouling is of great importance to be able to evaluate cake properties during filtration runs. Moreover, local information is necessary to analyze and model the basic mechanisms involved in deposit formation. Many studies have investigated cake formation on flat-sheet membranes but there is a lack of methods suitable for confined geometries such as inside-out hollow-fiber membranes. This study focuses on development and validation of an optical method using a laser sheet for in situ cake characterization in a narrow channel. The method enables the measurement of time-variations of cross-section cake thickness ranging from 10 μm to hundreds of micrometers with a 3 μm resolution and a 2.5 μm standard deviation. The reproducibility of the results and the order of magnitude are discussed on the basis of experimental results for clay suspensions. Limitations of the method are investigated; in the range of 0-2 g/l for clay suspensions, suspension concentration has no effect. Finally, future applications of the method as a tool for dead-end fouling characterization are considered. © 2007 American Institute of Chemical Engineers AIChE J, 2007</description><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>dead-end ultrafiltration</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Filtration</subject><subject>hollow-fiber</subject><subject>in situ measurement</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Membrane separation</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>membranes</subject><subject>optical method</subject><subject>Optics</subject><subject>particle fouling</subject><subject>Sedimentation &amp; deposition</subject><subject>Standard deviation</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1v1DAQhi0EEkvhwC8gQgKph7Qz9jqOj6sV7FasyoHycbMcx-66ZOPFTqDl1-NtSishcRrNzDPvzLyEvEQ4QQB6qr05QaRcPCIz5HNRcgn8MZkBAJa5gE_Js5SuckZFTWdkHfaDN7ordnbYhrZwIRa-L5IfxsJsddRmsNH_1oMPfRFc7o-d7y-LdoyH4Hw3xNvmc_LE6S7ZF3fxiFy8f3exXJebj6uz5WJTGo5SlCjmBh2IhgOT2NrK1FhLIZu2Am1awTVlTW0b29JKNo4y27TQYq5yR51hR-R4kt3qTu2j3-l4o4L2ar3YqEMNKMM6f_sTM_t2Yvcx_BhtGtTOJ2O7Tvc2jEkxgDlyJjL4-h_wKoyxz28olJLVInv1sNnEkFK07n49gjp4r7L36tb7zL65E9Qpm-ui7o1PDwN1Vq3qw4WnE_fLd_bm_4Jqcbb8q1xOEz4N9vp-QsfvqhJMcPX1fKVW8AG-rJff1HnmX02800Hpy5iv-PyJAubfhRRVJdkf90upig</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Mendret, J</creator><creator>Guigui, C</creator><creator>Schmitz, P</creator><creator>Cabassud, C</creator><creator>Duru, P</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9171-8266</orcidid><orcidid>https://orcid.org/0000-0001-7554-8490</orcidid><orcidid>https://orcid.org/0009-0007-1446-3638</orcidid></search><sort><creationdate>200709</creationdate><title>optical method for in situ characterization of fouling during filtration</title><author>Mendret, J ; Guigui, C ; Schmitz, P ; Cabassud, C ; Duru, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5197-174c1f07b50391de6c818979bd60acd75a23b8ebed269bf23ebd0d1a235f2fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>dead-end ultrafiltration</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Filtration</topic><topic>hollow-fiber</topic><topic>in situ measurement</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Membrane separation</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>membranes</topic><topic>optical method</topic><topic>Optics</topic><topic>particle fouling</topic><topic>Sedimentation &amp; deposition</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendret, J</creatorcontrib><creatorcontrib>Guigui, C</creatorcontrib><creatorcontrib>Schmitz, P</creatorcontrib><creatorcontrib>Cabassud, C</creatorcontrib><creatorcontrib>Duru, P</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendret, J</au><au>Guigui, C</au><au>Schmitz, P</au><au>Cabassud, C</au><au>Duru, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>optical method for in situ characterization of fouling during filtration</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2007-09</date><risdate>2007</risdate><volume>53</volume><issue>9</issue><spage>2265</spage><epage>2274</epage><pages>2265-2274</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>In dead-end ultrafiltration, in situ characterization of fouling is of great importance to be able to evaluate cake properties during filtration runs. Moreover, local information is necessary to analyze and model the basic mechanisms involved in deposit formation. Many studies have investigated cake formation on flat-sheet membranes but there is a lack of methods suitable for confined geometries such as inside-out hollow-fiber membranes. This study focuses on development and validation of an optical method using a laser sheet for in situ cake characterization in a narrow channel. The method enables the measurement of time-variations of cross-section cake thickness ranging from 10 μm to hundreds of micrometers with a 3 μm resolution and a 2.5 μm standard deviation. The reproducibility of the results and the order of magnitude are discussed on the basis of experimental results for clay suspensions. Limitations of the method are investigated; in the range of 0-2 g/l for clay suspensions, suspension concentration has no effect. Finally, future applications of the method as a tool for dead-end fouling characterization are considered. © 2007 American Institute of Chemical Engineers AIChE J, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11257</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9171-8266</orcidid><orcidid>https://orcid.org/0000-0001-7554-8490</orcidid><orcidid>https://orcid.org/0009-0007-1446-3638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2007-09, Vol.53 (9), p.2265-2274
issn 0001-1541
1547-5905
language eng
recordid cdi_hal_primary_oai_HAL_hal_02318000v1
source Access via Wiley Online Library
subjects Applied sciences
Chemical and Process Engineering
Chemical engineering
dead-end ultrafiltration
Engineering Sciences
Exact sciences and technology
Filtration
hollow-fiber
in situ measurement
Liquid-liquid and fluid-solid mechanical separations
Membrane separation
Membrane separation (reverse osmosis, dialysis...)
membranes
optical method
Optics
particle fouling
Sedimentation & deposition
Standard deviation
title optical method for in situ characterization of fouling during filtration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=optical%20method%20for%20in%20situ%20characterization%20of%20fouling%20during%20filtration&rft.jtitle=AIChE%20journal&rft.au=Mendret,%20J&rft.date=2007-09&rft.volume=53&rft.issue=9&rft.spage=2265&rft.epage=2274&rft.pages=2265-2274&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11257&rft_dat=%3Cproquest_hal_p%3E1319841221%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199387278&rft_id=info:pmid/&rfr_iscdi=true