Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)
The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 2012-12, Vol.31 (12), p.2841-2847 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2847 |
---|---|
container_issue | 12 |
container_start_page | 2841 |
container_title | Environmental toxicology and chemistry |
container_volume | 31 |
creator | Devos, Alexandre Voiseux, Claire Caplat, Christelle Fievet, Bruno |
description | The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC |
doi_str_mv | 10.1002/etc.2012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02314079v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819814191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</originalsourceid><addsrcrecordid>eNp10M1uEzEUhmELgWgoSFwBssSmXUw5tmfsOcs2ahOkAFXFz4KF5Th24pKOgz0DDVePo4TsWFmyHr06-gh5zeCCAfB3rrcXHBh_QkasaXjVStY-JSNQAirFZXtCXuR8D8AkIj4nJ5wjKmBiRL5fe-9sT6OndpViFyx1j5uYh-RoH-mf0FkaOrqNQ7ekeWP6vKP9ytFbY4MvPG5z7xI9GyeTc8x9coYuw9Lk85fkmTfr7F4d3lPy5eb683hazT5N3o8vZ5WtOeMV1sxzFKbFZjFvhZ-DQPRKommhFtBItVDC1GjFvG24VzVIUzuo0aGSwi3EKTnfd1dmrTcpPJi01dEEPb2c6d0fcMFqUPiLFft2bzcp_hxc7vV9HFJXztOMKY5MtSiLOtsrm2LOyfljloHeLa7L4nq3eKFvDsFh_uAWR_hv4gKqPfgd1m7735Au5hA8-FB2fTx6k35oqYRq9LePEz25-zr9cHd7o6_EX5Cjljw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1172917896</pqid></control><display><type>article</type><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</creator><creatorcontrib>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</creatorcontrib><description>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.2012</identifier><identifier>PMID: 22997013</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Anthropogenic factors ; Biomarkers ; Biomarkers - metabolism ; Chemical contaminants ; Chronic exposure ; Coastal environments ; Coasts ; Contaminants ; Crassostrea - drug effects ; Crassostrea - physiology ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Detoxification ; Developmental stages ; Dose-Response Relationship, Drug ; Effects ; Environmental Sciences ; Gene expression ; Gene Expression - drug effects ; Genes ; Genes, MDR ; Genes, p53 ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Metallothionein ; Metallothionein - metabolism ; Metamorphosis ; Natural environment ; Oxidative stress ; Oyster spat ; Oysters ; Pollutants ; Shellfish ; Water Pollutants, Chemical - metabolism ; Water Pollutants, Chemical - toxicity ; Zinc ; Zinc - metabolism ; Zinc - toxicity</subject><ispartof>Environmental toxicology and chemistry, 2012-12, Vol.31 (12), p.2841-2847</ispartof><rights>Copyright © 2012 SETAC</rights><rights>Copyright © 2012 SETAC.</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</citedby><cites>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.2012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.2012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22997013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02314079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Devos, Alexandre</creatorcontrib><creatorcontrib>Voiseux, Claire</creatorcontrib><creatorcontrib>Caplat, Christelle</creatorcontrib><creatorcontrib>Fievet, Bruno</creatorcontrib><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><title>Environmental toxicology and chemistry</title><addtitle>Environmental Toxicology and Chemistry</addtitle><description>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</description><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Chemical contaminants</subject><subject>Chronic exposure</subject><subject>Coastal environments</subject><subject>Coasts</subject><subject>Contaminants</subject><subject>Crassostrea - drug effects</subject><subject>Crassostrea - physiology</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Detoxification</subject><subject>Developmental stages</subject><subject>Dose-Response Relationship, Drug</subject><subject>Effects</subject><subject>Environmental Sciences</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>Genes, MDR</subject><subject>Genes, p53</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Metallothionein</subject><subject>Metallothionein - metabolism</subject><subject>Metamorphosis</subject><subject>Natural environment</subject><subject>Oxidative stress</subject><subject>Oyster spat</subject><subject>Oysters</subject><subject>Pollutants</subject><subject>Shellfish</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><subject>Zinc - toxicity</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1uEzEUhmELgWgoSFwBssSmXUw5tmfsOcs2ahOkAFXFz4KF5Th24pKOgz0DDVePo4TsWFmyHr06-gh5zeCCAfB3rrcXHBh_QkasaXjVStY-JSNQAirFZXtCXuR8D8AkIj4nJ5wjKmBiRL5fe-9sT6OndpViFyx1j5uYh-RoH-mf0FkaOrqNQ7ekeWP6vKP9ytFbY4MvPG5z7xI9GyeTc8x9coYuw9Lk85fkmTfr7F4d3lPy5eb683hazT5N3o8vZ5WtOeMV1sxzFKbFZjFvhZ-DQPRKommhFtBItVDC1GjFvG24VzVIUzuo0aGSwi3EKTnfd1dmrTcpPJi01dEEPb2c6d0fcMFqUPiLFft2bzcp_hxc7vV9HFJXztOMKY5MtSiLOtsrm2LOyfljloHeLa7L4nq3eKFvDsFh_uAWR_hv4gKqPfgd1m7735Au5hA8-FB2fTx6k35oqYRq9LePEz25-zr9cHd7o6_EX5Cjljw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Devos, Alexandre</creator><creator>Voiseux, Claire</creator><creator>Caplat, Christelle</creator><creator>Fievet, Bruno</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>201212</creationdate><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><author>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Chemical contaminants</topic><topic>Chronic exposure</topic><topic>Coastal environments</topic><topic>Coasts</topic><topic>Contaminants</topic><topic>Crassostrea - drug effects</topic><topic>Crassostrea - physiology</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Detoxification</topic><topic>Developmental stages</topic><topic>Dose-Response Relationship, Drug</topic><topic>Effects</topic><topic>Environmental Sciences</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>Genes, MDR</topic><topic>Genes, p53</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Metallothionein</topic><topic>Metallothionein - metabolism</topic><topic>Metamorphosis</topic><topic>Natural environment</topic><topic>Oxidative stress</topic><topic>Oyster spat</topic><topic>Oysters</topic><topic>Pollutants</topic><topic>Shellfish</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><topic>Zinc - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devos, Alexandre</creatorcontrib><creatorcontrib>Voiseux, Claire</creatorcontrib><creatorcontrib>Caplat, Christelle</creatorcontrib><creatorcontrib>Fievet, Bruno</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devos, Alexandre</au><au>Voiseux, Claire</au><au>Caplat, Christelle</au><au>Fievet, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environmental Toxicology and Chemistry</addtitle><date>2012-12</date><risdate>2012</risdate><volume>31</volume><issue>12</issue><spage>2841</spage><epage>2847</epage><pages>2841-2847</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>22997013</pmid><doi>10.1002/etc.2012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2012-12, Vol.31 (12), p.2841-2847 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02314079v1 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Anthropogenic factors Biomarkers Biomarkers - metabolism Chemical contaminants Chronic exposure Coastal environments Coasts Contaminants Crassostrea - drug effects Crassostrea - physiology Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Detoxification Developmental stages Dose-Response Relationship, Drug Effects Environmental Sciences Gene expression Gene Expression - drug effects Genes Genes, MDR Genes, p53 Glutathione Transferase - genetics Glutathione Transferase - metabolism Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Metallothionein Metallothionein - metabolism Metamorphosis Natural environment Oxidative stress Oyster spat Oysters Pollutants Shellfish Water Pollutants, Chemical - metabolism Water Pollutants, Chemical - toxicity Zinc Zinc - metabolism Zinc - toxicity |
title | Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20chronic%20exposure%20to%20zinc%20in%20young%20spats%20of%20the%20Pacific%20oyster%20(Crassostrea%20gigas)&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Devos,%20Alexandre&rft.date=2012-12&rft.volume=31&rft.issue=12&rft.spage=2841&rft.epage=2847&rft.pages=2841-2847&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.2012&rft_dat=%3Cproquest_hal_p%3E2819814191%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1172917896&rft_id=info:pmid/22997013&rfr_iscdi=true |