Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)

The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2012-12, Vol.31 (12), p.2841-2847
Hauptverfasser: Devos, Alexandre, Voiseux, Claire, Caplat, Christelle, Fievet, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue 12
container_start_page 2841
container_title Environmental toxicology and chemistry
container_volume 31
creator Devos, Alexandre
Voiseux, Claire
Caplat, Christelle
Fievet, Bruno
description The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC
doi_str_mv 10.1002/etc.2012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02314079v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819814191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</originalsourceid><addsrcrecordid>eNp10M1uEzEUhmELgWgoSFwBssSmXUw5tmfsOcs2ahOkAFXFz4KF5Th24pKOgz0DDVePo4TsWFmyHr06-gh5zeCCAfB3rrcXHBh_QkasaXjVStY-JSNQAirFZXtCXuR8D8AkIj4nJ5wjKmBiRL5fe-9sT6OndpViFyx1j5uYh-RoH-mf0FkaOrqNQ7ekeWP6vKP9ytFbY4MvPG5z7xI9GyeTc8x9coYuw9Lk85fkmTfr7F4d3lPy5eb683hazT5N3o8vZ5WtOeMV1sxzFKbFZjFvhZ-DQPRKommhFtBItVDC1GjFvG24VzVIUzuo0aGSwi3EKTnfd1dmrTcpPJi01dEEPb2c6d0fcMFqUPiLFft2bzcp_hxc7vV9HFJXztOMKY5MtSiLOtsrm2LOyfljloHeLa7L4nq3eKFvDsFh_uAWR_hv4gKqPfgd1m7735Au5hA8-FB2fTx6k35oqYRq9LePEz25-zr9cHd7o6_EX5Cjljw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1172917896</pqid></control><display><type>article</type><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</creator><creatorcontrib>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</creatorcontrib><description>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.2012</identifier><identifier>PMID: 22997013</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Anthropogenic factors ; Biomarkers ; Biomarkers - metabolism ; Chemical contaminants ; Chronic exposure ; Coastal environments ; Coasts ; Contaminants ; Crassostrea - drug effects ; Crassostrea - physiology ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Detoxification ; Developmental stages ; Dose-Response Relationship, Drug ; Effects ; Environmental Sciences ; Gene expression ; Gene Expression - drug effects ; Genes ; Genes, MDR ; Genes, p53 ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Metallothionein ; Metallothionein - metabolism ; Metamorphosis ; Natural environment ; Oxidative stress ; Oyster spat ; Oysters ; Pollutants ; Shellfish ; Water Pollutants, Chemical - metabolism ; Water Pollutants, Chemical - toxicity ; Zinc ; Zinc - metabolism ; Zinc - toxicity</subject><ispartof>Environmental toxicology and chemistry, 2012-12, Vol.31 (12), p.2841-2847</ispartof><rights>Copyright © 2012 SETAC</rights><rights>Copyright © 2012 SETAC.</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</citedby><cites>FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.2012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.2012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22997013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02314079$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Devos, Alexandre</creatorcontrib><creatorcontrib>Voiseux, Claire</creatorcontrib><creatorcontrib>Caplat, Christelle</creatorcontrib><creatorcontrib>Fievet, Bruno</creatorcontrib><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><title>Environmental toxicology and chemistry</title><addtitle>Environmental Toxicology and Chemistry</addtitle><description>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</description><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Chemical contaminants</subject><subject>Chronic exposure</subject><subject>Coastal environments</subject><subject>Coasts</subject><subject>Contaminants</subject><subject>Crassostrea - drug effects</subject><subject>Crassostrea - physiology</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Detoxification</subject><subject>Developmental stages</subject><subject>Dose-Response Relationship, Drug</subject><subject>Effects</subject><subject>Environmental Sciences</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>Genes, MDR</subject><subject>Genes, p53</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Metallothionein</subject><subject>Metallothionein - metabolism</subject><subject>Metamorphosis</subject><subject>Natural environment</subject><subject>Oxidative stress</subject><subject>Oyster spat</subject><subject>Oysters</subject><subject>Pollutants</subject><subject>Shellfish</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><subject>Zinc - toxicity</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1uEzEUhmELgWgoSFwBssSmXUw5tmfsOcs2ahOkAFXFz4KF5Th24pKOgz0DDVePo4TsWFmyHr06-gh5zeCCAfB3rrcXHBh_QkasaXjVStY-JSNQAirFZXtCXuR8D8AkIj4nJ5wjKmBiRL5fe-9sT6OndpViFyx1j5uYh-RoH-mf0FkaOrqNQ7ekeWP6vKP9ytFbY4MvPG5z7xI9GyeTc8x9coYuw9Lk85fkmTfr7F4d3lPy5eb683hazT5N3o8vZ5WtOeMV1sxzFKbFZjFvhZ-DQPRKommhFtBItVDC1GjFvG24VzVIUzuo0aGSwi3EKTnfd1dmrTcpPJi01dEEPb2c6d0fcMFqUPiLFft2bzcp_hxc7vV9HFJXztOMKY5MtSiLOtsrm2LOyfljloHeLa7L4nq3eKFvDsFh_uAWR_hv4gKqPfgd1m7735Au5hA8-FB2fTx6k35oqYRq9LePEz25-zr9cHd7o6_EX5Cjljw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Devos, Alexandre</creator><creator>Voiseux, Claire</creator><creator>Caplat, Christelle</creator><creator>Fievet, Bruno</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>201212</creationdate><title>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</title><author>Devos, Alexandre ; Voiseux, Claire ; Caplat, Christelle ; Fievet, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4212-941f293a895db83fb0399f769a80430567d73a49c3b852f7406a4e049e9763ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Chemical contaminants</topic><topic>Chronic exposure</topic><topic>Coastal environments</topic><topic>Coasts</topic><topic>Contaminants</topic><topic>Crassostrea - drug effects</topic><topic>Crassostrea - physiology</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Detoxification</topic><topic>Developmental stages</topic><topic>Dose-Response Relationship, Drug</topic><topic>Effects</topic><topic>Environmental Sciences</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>Genes, MDR</topic><topic>Genes, p53</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Metallothionein</topic><topic>Metallothionein - metabolism</topic><topic>Metamorphosis</topic><topic>Natural environment</topic><topic>Oxidative stress</topic><topic>Oyster spat</topic><topic>Oysters</topic><topic>Pollutants</topic><topic>Shellfish</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><topic>Zinc - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devos, Alexandre</creatorcontrib><creatorcontrib>Voiseux, Claire</creatorcontrib><creatorcontrib>Caplat, Christelle</creatorcontrib><creatorcontrib>Fievet, Bruno</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devos, Alexandre</au><au>Voiseux, Claire</au><au>Caplat, Christelle</au><au>Fievet, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environmental Toxicology and Chemistry</addtitle><date>2012-12</date><risdate>2012</risdate><volume>31</volume><issue>12</issue><spage>2841</spage><epage>2847</epage><pages>2841-2847</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>The marine coastal environment is exposed to a mixture of environmental pollutants of anthropogenic origin, resulting in chronic low concentrations of contaminants. As a consequence, most coastal marine species are exposed to low doses of such pollutants during their entire life. Many marine species live for years in their natural environment, whereas they do not under laboratory exposure conditions. Using early stages of development in laboratory work allows animals to be chronically exposed from an early age over a reasonable experiment period. In the present study, the authors investigated the effect of chronic exposure to zinc in spats of the Pacific oyster (Crassostrea gigas), from metamorphosis up to 10 weeks. The authors investigated integrated biological endpoints that would account for the apparent general health of the animals as well as molecular markers showing more subtle effects that could potentially go unnoticed at a biologically integrated level. The authors measured in parallel both growth and the transcriptional level of target stress genes. Growth was monitored by image analysis of large samples to avoid high variability and ensure statistical robustness. A dose–response relationship was derived from growth data, yielding a median effective concentration (EC50) of 7.55 µM. Stress genes selected on the basis of available RNA sequences in C. gigas included genes involved in chaperone proteins, oxidative stress, detoxification, and cell cycle regulation. Out of nine stress target genes, only metallothionein displayed overexpression in response to high levels of zinc. Environ. Toxicol. Chem. 2012; 31: 2841–2847. © 2012 SETAC</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>22997013</pmid><doi>10.1002/etc.2012</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-7268
ispartof Environmental toxicology and chemistry, 2012-12, Vol.31 (12), p.2841-2847
issn 0730-7268
1552-8618
language eng
recordid cdi_hal_primary_oai_HAL_hal_02314079v1
source MEDLINE; Access via Wiley Online Library
subjects Animals
Anthropogenic factors
Biomarkers
Biomarkers - metabolism
Chemical contaminants
Chronic exposure
Coastal environments
Coasts
Contaminants
Crassostrea - drug effects
Crassostrea - physiology
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Detoxification
Developmental stages
Dose-Response Relationship, Drug
Effects
Environmental Sciences
Gene expression
Gene Expression - drug effects
Genes
Genes, MDR
Genes, p53
Glutathione Transferase - genetics
Glutathione Transferase - metabolism
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Metallothionein
Metallothionein - metabolism
Metamorphosis
Natural environment
Oxidative stress
Oyster spat
Oysters
Pollutants
Shellfish
Water Pollutants, Chemical - metabolism
Water Pollutants, Chemical - toxicity
Zinc
Zinc - metabolism
Zinc - toxicity
title Effect of chronic exposure to zinc in young spats of the Pacific oyster (Crassostrea gigas)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20chronic%20exposure%20to%20zinc%20in%20young%20spats%20of%20the%20Pacific%20oyster%20(Crassostrea%20gigas)&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Devos,%20Alexandre&rft.date=2012-12&rft.volume=31&rft.issue=12&rft.spage=2841&rft.epage=2847&rft.pages=2841-2847&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.2012&rft_dat=%3Cproquest_hal_p%3E2819814191%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1172917896&rft_id=info:pmid/22997013&rfr_iscdi=true