X‐ray imaging of a high‐temperature furnace applied to glass melting
The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading t...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2020-02, Vol.103 (2), p.979-992 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 992 |
---|---|
container_issue | 2 |
container_start_page | 979 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Boloré, Damien Gibilaro, Mathieu Massot, Laurent Chamelot, Pierre Cid, Emmanuel Masbernat, Olivier Pigeonneau, Franck |
description | The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces. |
doi_str_mv | 10.1111/jace.16809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02309775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325680548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFYvPsGCJ4XU3U02yR5LUasUvCh4W2bTSZqybeJuqvTmI_iMPokbIx6dyzDDNz___IScczbhoa7XUOCEpzlTB2TEpeSRUDw9JCPGmIiyXLBjcuL9Ooxc5cmIzF--Pj4d7Gm9gareVrQpKdBVXa3CvsNNiw66nUNa7tw2iFNoW1vjknYNrSx4Tzdou3B4So5KsB7PfvuYPN_ePM3m0eLx7n42XURFnHEV8WViIM5NLLJUKWMUFjJPTFGgkGUSZ6LENEVACN4BEskzIwxLoBSYGmQQj8nloLsCq1sXbLu9bqDW8-lC9zsmYqayTL7xwF4MbOua1x36Tq-b_g3rtYiFDDHJJA_U1UAVrvHeYfkny5nuU9V9qvon1QDzAX6vLe7_IfXDdHYz3HwDjoh6wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325680548</pqid></control><display><type>article</type><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</creator><creatorcontrib>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</creatorcontrib><description>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16809</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Aluminum oxide ; Bubbles ; Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Computational fluid dynamics ; Crucible furnaces ; Engineering Sciences ; glass melting ; Image processing ; Melting ; optical flow ; Optical flow (image analysis) ; Optimization ; Particle size distribution ; Silica glass ; Silicon dioxide ; Tin dioxide ; two‐phase flow ; Variations ; Velocity distribution ; X‐ray imaging</subject><ispartof>Journal of the American Ceramic Society, 2020-02, Vol.103 (2), p.979-992</ispartof><rights>2019 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</citedby><cites>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</cites><orcidid>0000-0003-0564-4596 ; 0000-0003-2184-0378 ; 0000-0002-9920-2723 ; 0000-0003-0309-0729 ; 0000-0003-4399-1396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16809$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16809$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02309775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boloré, Damien</creatorcontrib><creatorcontrib>Gibilaro, Mathieu</creatorcontrib><creatorcontrib>Massot, Laurent</creatorcontrib><creatorcontrib>Chamelot, Pierre</creatorcontrib><creatorcontrib>Cid, Emmanuel</creatorcontrib><creatorcontrib>Masbernat, Olivier</creatorcontrib><creatorcontrib>Pigeonneau, Franck</creatorcontrib><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><title>Journal of the American Ceramic Society</title><description>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</description><subject>Algorithms</subject><subject>Aluminum oxide</subject><subject>Bubbles</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Computational fluid dynamics</subject><subject>Crucible furnaces</subject><subject>Engineering Sciences</subject><subject>glass melting</subject><subject>Image processing</subject><subject>Melting</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Particle size distribution</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Tin dioxide</subject><subject>two‐phase flow</subject><subject>Variations</subject><subject>Velocity distribution</subject><subject>X‐ray imaging</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFYvPsGCJ4XU3U02yR5LUasUvCh4W2bTSZqybeJuqvTmI_iMPokbIx6dyzDDNz___IScczbhoa7XUOCEpzlTB2TEpeSRUDw9JCPGmIiyXLBjcuL9Ooxc5cmIzF--Pj4d7Gm9gareVrQpKdBVXa3CvsNNiw66nUNa7tw2iFNoW1vjknYNrSx4Tzdou3B4So5KsB7PfvuYPN_ePM3m0eLx7n42XURFnHEV8WViIM5NLLJUKWMUFjJPTFGgkGUSZ6LENEVACN4BEskzIwxLoBSYGmQQj8nloLsCq1sXbLu9bqDW8-lC9zsmYqayTL7xwF4MbOua1x36Tq-b_g3rtYiFDDHJJA_U1UAVrvHeYfkny5nuU9V9qvon1QDzAX6vLe7_IfXDdHYz3HwDjoh6wg</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Boloré, Damien</creator><creator>Gibilaro, Mathieu</creator><creator>Massot, Laurent</creator><creator>Chamelot, Pierre</creator><creator>Cid, Emmanuel</creator><creator>Masbernat, Olivier</creator><creator>Pigeonneau, Franck</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0564-4596</orcidid><orcidid>https://orcid.org/0000-0003-2184-0378</orcidid><orcidid>https://orcid.org/0000-0002-9920-2723</orcidid><orcidid>https://orcid.org/0000-0003-0309-0729</orcidid><orcidid>https://orcid.org/0000-0003-4399-1396</orcidid></search><sort><creationdate>202002</creationdate><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><author>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aluminum oxide</topic><topic>Bubbles</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Computational fluid dynamics</topic><topic>Crucible furnaces</topic><topic>Engineering Sciences</topic><topic>glass melting</topic><topic>Image processing</topic><topic>Melting</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Particle size distribution</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Tin dioxide</topic><topic>two‐phase flow</topic><topic>Variations</topic><topic>Velocity distribution</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boloré, Damien</creatorcontrib><creatorcontrib>Gibilaro, Mathieu</creatorcontrib><creatorcontrib>Massot, Laurent</creatorcontrib><creatorcontrib>Chamelot, Pierre</creatorcontrib><creatorcontrib>Cid, Emmanuel</creatorcontrib><creatorcontrib>Masbernat, Olivier</creatorcontrib><creatorcontrib>Pigeonneau, Franck</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boloré, Damien</au><au>Gibilaro, Mathieu</au><au>Massot, Laurent</au><au>Chamelot, Pierre</au><au>Cid, Emmanuel</au><au>Masbernat, Olivier</au><au>Pigeonneau, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‐ray imaging of a high‐temperature furnace applied to glass melting</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-02</date><risdate>2020</risdate><volume>103</volume><issue>2</issue><spage>979</spage><epage>992</epage><pages>979-992</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16809</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0564-4596</orcidid><orcidid>https://orcid.org/0000-0003-2184-0378</orcidid><orcidid>https://orcid.org/0000-0002-9920-2723</orcidid><orcidid>https://orcid.org/0000-0003-0309-0729</orcidid><orcidid>https://orcid.org/0000-0003-4399-1396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-02, Vol.103 (2), p.979-992 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02309775v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Aluminum oxide Bubbles Chemical and Process Engineering Chemical engineering Chemical Sciences Computational fluid dynamics Crucible furnaces Engineering Sciences glass melting Image processing Melting optical flow Optical flow (image analysis) Optimization Particle size distribution Silica glass Silicon dioxide Tin dioxide two‐phase flow Variations Velocity distribution X‐ray imaging |
title | X‐ray imaging of a high‐temperature furnace applied to glass melting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%90ray%20imaging%20of%20a%20high%E2%80%90temperature%20furnace%20applied%20to%20glass%20melting&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Bolor%C3%A9,%20Damien&rft.date=2020-02&rft.volume=103&rft.issue=2&rft.spage=979&rft.epage=992&rft.pages=979-992&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16809&rft_dat=%3Cproquest_hal_p%3E2325680548%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325680548&rft_id=info:pmid/&rfr_iscdi=true |