X‐ray imaging of a high‐temperature furnace applied to glass melting

The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-02, Vol.103 (2), p.979-992
Hauptverfasser: Boloré, Damien, Gibilaro, Mathieu, Massot, Laurent, Chamelot, Pierre, Cid, Emmanuel, Masbernat, Olivier, Pigeonneau, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 2
container_start_page 979
container_title Journal of the American Ceramic Society
container_volume 103
creator Boloré, Damien
Gibilaro, Mathieu
Massot, Laurent
Chamelot, Pierre
Cid, Emmanuel
Masbernat, Olivier
Pigeonneau, Franck
description The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.
doi_str_mv 10.1111/jace.16809
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02309775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325680548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFYvPsGCJ4XU3U02yR5LUasUvCh4W2bTSZqybeJuqvTmI_iMPokbIx6dyzDDNz___IScczbhoa7XUOCEpzlTB2TEpeSRUDw9JCPGmIiyXLBjcuL9Ooxc5cmIzF--Pj4d7Gm9gareVrQpKdBVXa3CvsNNiw66nUNa7tw2iFNoW1vjknYNrSx4Tzdou3B4So5KsB7PfvuYPN_ePM3m0eLx7n42XURFnHEV8WViIM5NLLJUKWMUFjJPTFGgkGUSZ6LENEVACN4BEskzIwxLoBSYGmQQj8nloLsCq1sXbLu9bqDW8-lC9zsmYqayTL7xwF4MbOua1x36Tq-b_g3rtYiFDDHJJA_U1UAVrvHeYfkny5nuU9V9qvon1QDzAX6vLe7_IfXDdHYz3HwDjoh6wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325680548</pqid></control><display><type>article</type><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</creator><creatorcontrib>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</creatorcontrib><description>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16809</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Aluminum oxide ; Bubbles ; Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Computational fluid dynamics ; Crucible furnaces ; Engineering Sciences ; glass melting ; Image processing ; Melting ; optical flow ; Optical flow (image analysis) ; Optimization ; Particle size distribution ; Silica glass ; Silicon dioxide ; Tin dioxide ; two‐phase flow ; Variations ; Velocity distribution ; X‐ray imaging</subject><ispartof>Journal of the American Ceramic Society, 2020-02, Vol.103 (2), p.979-992</ispartof><rights>2019 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</citedby><cites>FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</cites><orcidid>0000-0003-0564-4596 ; 0000-0003-2184-0378 ; 0000-0002-9920-2723 ; 0000-0003-0309-0729 ; 0000-0003-4399-1396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16809$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16809$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02309775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boloré, Damien</creatorcontrib><creatorcontrib>Gibilaro, Mathieu</creatorcontrib><creatorcontrib>Massot, Laurent</creatorcontrib><creatorcontrib>Chamelot, Pierre</creatorcontrib><creatorcontrib>Cid, Emmanuel</creatorcontrib><creatorcontrib>Masbernat, Olivier</creatorcontrib><creatorcontrib>Pigeonneau, Franck</creatorcontrib><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><title>Journal of the American Ceramic Society</title><description>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</description><subject>Algorithms</subject><subject>Aluminum oxide</subject><subject>Bubbles</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Computational fluid dynamics</subject><subject>Crucible furnaces</subject><subject>Engineering Sciences</subject><subject>glass melting</subject><subject>Image processing</subject><subject>Melting</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Particle size distribution</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Tin dioxide</subject><subject>two‐phase flow</subject><subject>Variations</subject><subject>Velocity distribution</subject><subject>X‐ray imaging</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFYvPsGCJ4XU3U02yR5LUasUvCh4W2bTSZqybeJuqvTmI_iMPokbIx6dyzDDNz___IScczbhoa7XUOCEpzlTB2TEpeSRUDw9JCPGmIiyXLBjcuL9Ooxc5cmIzF--Pj4d7Gm9gareVrQpKdBVXa3CvsNNiw66nUNa7tw2iFNoW1vjknYNrSx4Tzdou3B4So5KsB7PfvuYPN_ePM3m0eLx7n42XURFnHEV8WViIM5NLLJUKWMUFjJPTFGgkGUSZ6LENEVACN4BEskzIwxLoBSYGmQQj8nloLsCq1sXbLu9bqDW8-lC9zsmYqayTL7xwF4MbOua1x36Tq-b_g3rtYiFDDHJJA_U1UAVrvHeYfkny5nuU9V9qvon1QDzAX6vLe7_IfXDdHYz3HwDjoh6wg</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Boloré, Damien</creator><creator>Gibilaro, Mathieu</creator><creator>Massot, Laurent</creator><creator>Chamelot, Pierre</creator><creator>Cid, Emmanuel</creator><creator>Masbernat, Olivier</creator><creator>Pigeonneau, Franck</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0564-4596</orcidid><orcidid>https://orcid.org/0000-0003-2184-0378</orcidid><orcidid>https://orcid.org/0000-0002-9920-2723</orcidid><orcidid>https://orcid.org/0000-0003-0309-0729</orcidid><orcidid>https://orcid.org/0000-0003-4399-1396</orcidid></search><sort><creationdate>202002</creationdate><title>X‐ray imaging of a high‐temperature furnace applied to glass melting</title><author>Boloré, Damien ; Gibilaro, Mathieu ; Massot, Laurent ; Chamelot, Pierre ; Cid, Emmanuel ; Masbernat, Olivier ; Pigeonneau, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3719-1d4ba38b327699bb9ec584bcce25f4372fe66eaea551aa4517b2b04af2e6be0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aluminum oxide</topic><topic>Bubbles</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Computational fluid dynamics</topic><topic>Crucible furnaces</topic><topic>Engineering Sciences</topic><topic>glass melting</topic><topic>Image processing</topic><topic>Melting</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Particle size distribution</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Tin dioxide</topic><topic>two‐phase flow</topic><topic>Variations</topic><topic>Velocity distribution</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boloré, Damien</creatorcontrib><creatorcontrib>Gibilaro, Mathieu</creatorcontrib><creatorcontrib>Massot, Laurent</creatorcontrib><creatorcontrib>Chamelot, Pierre</creatorcontrib><creatorcontrib>Cid, Emmanuel</creatorcontrib><creatorcontrib>Masbernat, Olivier</creatorcontrib><creatorcontrib>Pigeonneau, Franck</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boloré, Damien</au><au>Gibilaro, Mathieu</au><au>Massot, Laurent</au><au>Chamelot, Pierre</au><au>Cid, Emmanuel</au><au>Masbernat, Olivier</au><au>Pigeonneau, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‐ray imaging of a high‐temperature furnace applied to glass melting</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-02</date><risdate>2020</risdate><volume>103</volume><issue>2</issue><spage>979</spage><epage>992</epage><pages>979-992</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The dynamics of soda‐lime‐silica glass grain melting is investigated experimentally using a nonintrusive technique. A cylindrical alumina crucible is filled with glass cullet and placed into a furnace illuminated by an X‐ray source. This glass granular bed is gradually heated up to 1100°C, leading to its melting and the generation of a size‐distributed population of bubbles rising in the molten glass. An image processing algorithm of X‐ray images of the cullet bed during melting allows the characterization of bubbles size distribution in the crucible as well as their velocity. The introduction of tin dioxide μ‐particles in the glass matrix before melting enhances the texture of the images and makes possible the determination of the bubble‐induced molten glass velocity field by an optical flow technique. The bubble size distribution can be fitted by a log‐normal law, suggesting that it is closely related to the initial size distribution in the cullet bed. The liquid motion induced by the bubbles in Stokes' regime is strongly affected by the flow confinement and the determination of bubble rising velocity along its trajectory unveils the existence of local tiny temperature fluctuations in the crucible. Overall, the measuring techniques developed in this work seem to be very promising for the improvement of models and optimization of industrial glass furnaces.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16809</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0564-4596</orcidid><orcidid>https://orcid.org/0000-0003-2184-0378</orcidid><orcidid>https://orcid.org/0000-0002-9920-2723</orcidid><orcidid>https://orcid.org/0000-0003-0309-0729</orcidid><orcidid>https://orcid.org/0000-0003-4399-1396</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-02, Vol.103 (2), p.979-992
issn 0002-7820
1551-2916
language eng
recordid cdi_hal_primary_oai_HAL_hal_02309775v1
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Aluminum oxide
Bubbles
Chemical and Process Engineering
Chemical engineering
Chemical Sciences
Computational fluid dynamics
Crucible furnaces
Engineering Sciences
glass melting
Image processing
Melting
optical flow
Optical flow (image analysis)
Optimization
Particle size distribution
Silica glass
Silicon dioxide
Tin dioxide
two‐phase flow
Variations
Velocity distribution
X‐ray imaging
title X‐ray imaging of a high‐temperature furnace applied to glass melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%90ray%20imaging%20of%20a%20high%E2%80%90temperature%20furnace%20applied%20to%20glass%20melting&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Bolor%C3%A9,%20Damien&rft.date=2020-02&rft.volume=103&rft.issue=2&rft.spage=979&rft.epage=992&rft.pages=979-992&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16809&rft_dat=%3Cproquest_hal_p%3E2325680548%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325680548&rft_id=info:pmid/&rfr_iscdi=true