Compressive performance and crack propagation in Al alloy/Ti2AlC composites

Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256
Hauptverfasser: Hanaor, D.A.H., Hu, L., Kan, W.H., Proust, G., Foley, M., Karaman, I., Radovic, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue
container_start_page 247
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 672
creator Hanaor, D.A.H.
Hu, L.
Kan, W.H.
Proust, G.
Foley, M.
Karaman, I.
Radovic, M.
description Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.
doi_str_mv 10.1016/j.msea.2016.06.073
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02308363v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316307419</els_id><sourcerecordid>1835588178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU896qHd_GmbFLwsRV1xwct6Dmk61axtU5Puwn57UyoehYEZhvcevB9CtwQnBJN8tU86Dyqh4U5wGM7O0IIIzuK0YPk5WuCCkjjDBbtEV97vMcYkxdkCvZa2Gxx4b44QDeAa6zrVa4hUX0faKf0VDc4O6kONxvaR6aN1G6m2tafVztB1W0Y6BFhvRvDX6KJRrYeb371E70-Pu3ITb9-eX8r1NtYp52OcV6CEoDXRjKSi0MCaKm2aplCU0iKtRU4o5iLHOstJXWkutBCgOE5F1YAq2BLdz7mfqpWDM51yJ2mVkZv1Vk4_TBkWLGdHErR3sza0-D6AH2VnvIa2VT3Yg5dEsCwTgnARpHSWame9d9D8ZRMsJ8pyLyfKcqIscRjOgulhNkEofDTgpNcGAsDaONCjrK35z_4DPnqFDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835588178</pqid></control><display><type>article</type><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><source>Elsevier ScienceDirect Journals</source><creator>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</creator><creatorcontrib>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</creatorcontrib><description>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.06.073</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum base alloys ; Civil Engineering ; Compressive strength ; Crack propagation ; Cracks ; Engineering Sciences ; Fracture mechanics ; Materials ; Materials and structures in mechanics ; Matériaux composites et construction ; MAX phase ; Mechanics ; Mechanics of materials ; Phases ; Porosity ; Shrinkage ; Ti2AlC ; Tomography, Crack propagation ; XRM</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256</ispartof><rights>2016 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</citedby><cites>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509316307419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02308363$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanaor, D.A.H.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kan, W.H.</creatorcontrib><creatorcontrib>Proust, G.</creatorcontrib><creatorcontrib>Foley, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</description><subject>Aluminum base alloys</subject><subject>Civil Engineering</subject><subject>Compressive strength</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Engineering Sciences</subject><subject>Fracture mechanics</subject><subject>Materials</subject><subject>Materials and structures in mechanics</subject><subject>Matériaux composites et construction</subject><subject>MAX phase</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Phases</subject><subject>Porosity</subject><subject>Shrinkage</subject><subject>Ti2AlC</subject><subject>Tomography, Crack propagation</subject><subject>XRM</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU896qHd_GmbFLwsRV1xwct6Dmk61axtU5Puwn57UyoehYEZhvcevB9CtwQnBJN8tU86Dyqh4U5wGM7O0IIIzuK0YPk5WuCCkjjDBbtEV97vMcYkxdkCvZa2Gxx4b44QDeAa6zrVa4hUX0faKf0VDc4O6kONxvaR6aN1G6m2tafVztB1W0Y6BFhvRvDX6KJRrYeb371E70-Pu3ITb9-eX8r1NtYp52OcV6CEoDXRjKSi0MCaKm2aplCU0iKtRU4o5iLHOstJXWkutBCgOE5F1YAq2BLdz7mfqpWDM51yJ2mVkZv1Vk4_TBkWLGdHErR3sza0-D6AH2VnvIa2VT3Yg5dEsCwTgnARpHSWame9d9D8ZRMsJ8pyLyfKcqIscRjOgulhNkEofDTgpNcGAsDaONCjrK35z_4DPnqFDw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Hanaor, D.A.H.</creator><creator>Hu, L.</creator><creator>Kan, W.H.</creator><creator>Proust, G.</creator><creator>Foley, M.</creator><creator>Karaman, I.</creator><creator>Radovic, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160801</creationdate><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><author>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum base alloys</topic><topic>Civil Engineering</topic><topic>Compressive strength</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Engineering Sciences</topic><topic>Fracture mechanics</topic><topic>Materials</topic><topic>Materials and structures in mechanics</topic><topic>Matériaux composites et construction</topic><topic>MAX phase</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Phases</topic><topic>Porosity</topic><topic>Shrinkage</topic><topic>Ti2AlC</topic><topic>Tomography, Crack propagation</topic><topic>XRM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanaor, D.A.H.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kan, W.H.</creatorcontrib><creatorcontrib>Proust, G.</creatorcontrib><creatorcontrib>Foley, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanaor, D.A.H.</au><au>Hu, L.</au><au>Kan, W.H.</au><au>Proust, G.</au><au>Foley, M.</au><au>Karaman, I.</au><au>Radovic, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>672</volume><spage>247</spage><epage>256</epage><pages>247-256</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.06.073</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256
issn 0921-5093
1873-4936
language eng
recordid cdi_hal_primary_oai_HAL_hal_02308363v1
source Elsevier ScienceDirect Journals
subjects Aluminum base alloys
Civil Engineering
Compressive strength
Crack propagation
Cracks
Engineering Sciences
Fracture mechanics
Materials
Materials and structures in mechanics
Matériaux composites et construction
MAX phase
Mechanics
Mechanics of materials
Phases
Porosity
Shrinkage
Ti2AlC
Tomography, Crack propagation
XRM
title Compressive performance and crack propagation in Al alloy/Ti2AlC composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20performance%20and%20crack%20propagation%20in%20Al%20alloy/Ti2AlC%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Hanaor,%20D.A.H.&rft.date=2016-08-01&rft.volume=672&rft.spage=247&rft.epage=256&rft.pages=247-256&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.06.073&rft_dat=%3Cproquest_hal_p%3E1835588178%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835588178&rft_id=info:pmid/&rft_els_id=S0921509316307419&rfr_iscdi=true