Compressive performance and crack propagation in Al alloy/Ti2AlC composites
Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compre...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | |
container_start_page | 247 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 672 |
creator | Hanaor, D.A.H. Hu, L. Kan, W.H. Proust, G. Foley, M. Karaman, I. Radovic, M. |
description | Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites. |
doi_str_mv | 10.1016/j.msea.2016.06.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02308363v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316307419</els_id><sourcerecordid>1835588178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU896qHd_GmbFLwsRV1xwct6Dmk61axtU5Puwn57UyoehYEZhvcevB9CtwQnBJN8tU86Dyqh4U5wGM7O0IIIzuK0YPk5WuCCkjjDBbtEV97vMcYkxdkCvZa2Gxx4b44QDeAa6zrVa4hUX0faKf0VDc4O6kONxvaR6aN1G6m2tafVztB1W0Y6BFhvRvDX6KJRrYeb371E70-Pu3ITb9-eX8r1NtYp52OcV6CEoDXRjKSi0MCaKm2aplCU0iKtRU4o5iLHOstJXWkutBCgOE5F1YAq2BLdz7mfqpWDM51yJ2mVkZv1Vk4_TBkWLGdHErR3sza0-D6AH2VnvIa2VT3Yg5dEsCwTgnARpHSWame9d9D8ZRMsJ8pyLyfKcqIscRjOgulhNkEofDTgpNcGAsDaONCjrK35z_4DPnqFDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835588178</pqid></control><display><type>article</type><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><source>Elsevier ScienceDirect Journals</source><creator>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</creator><creatorcontrib>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</creatorcontrib><description>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.06.073</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum base alloys ; Civil Engineering ; Compressive strength ; Crack propagation ; Cracks ; Engineering Sciences ; Fracture mechanics ; Materials ; Materials and structures in mechanics ; Matériaux composites et construction ; MAX phase ; Mechanics ; Mechanics of materials ; Phases ; Porosity ; Shrinkage ; Ti2AlC ; Tomography, Crack propagation ; XRM</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256</ispartof><rights>2016 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</citedby><cites>FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509316307419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02308363$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanaor, D.A.H.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kan, W.H.</creatorcontrib><creatorcontrib>Proust, G.</creatorcontrib><creatorcontrib>Foley, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</description><subject>Aluminum base alloys</subject><subject>Civil Engineering</subject><subject>Compressive strength</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Engineering Sciences</subject><subject>Fracture mechanics</subject><subject>Materials</subject><subject>Materials and structures in mechanics</subject><subject>Matériaux composites et construction</subject><subject>MAX phase</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Phases</subject><subject>Porosity</subject><subject>Shrinkage</subject><subject>Ti2AlC</subject><subject>Tomography, Crack propagation</subject><subject>XRM</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU896qHd_GmbFLwsRV1xwct6Dmk61axtU5Puwn57UyoehYEZhvcevB9CtwQnBJN8tU86Dyqh4U5wGM7O0IIIzuK0YPk5WuCCkjjDBbtEV97vMcYkxdkCvZa2Gxx4b44QDeAa6zrVa4hUX0faKf0VDc4O6kONxvaR6aN1G6m2tafVztB1W0Y6BFhvRvDX6KJRrYeb371E70-Pu3ITb9-eX8r1NtYp52OcV6CEoDXRjKSi0MCaKm2aplCU0iKtRU4o5iLHOstJXWkutBCgOE5F1YAq2BLdz7mfqpWDM51yJ2mVkZv1Vk4_TBkWLGdHErR3sza0-D6AH2VnvIa2VT3Yg5dEsCwTgnARpHSWame9d9D8ZRMsJ8pyLyfKcqIscRjOgulhNkEofDTgpNcGAsDaONCjrK35z_4DPnqFDw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Hanaor, D.A.H.</creator><creator>Hu, L.</creator><creator>Kan, W.H.</creator><creator>Proust, G.</creator><creator>Foley, M.</creator><creator>Karaman, I.</creator><creator>Radovic, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160801</creationdate><title>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</title><author>Hanaor, D.A.H. ; Hu, L. ; Kan, W.H. ; Proust, G. ; Foley, M. ; Karaman, I. ; Radovic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6bea882d1c31489ce3fb4fff9a22294d861207860c561dbc78c88ea7048bfea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum base alloys</topic><topic>Civil Engineering</topic><topic>Compressive strength</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Engineering Sciences</topic><topic>Fracture mechanics</topic><topic>Materials</topic><topic>Materials and structures in mechanics</topic><topic>Matériaux composites et construction</topic><topic>MAX phase</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Phases</topic><topic>Porosity</topic><topic>Shrinkage</topic><topic>Ti2AlC</topic><topic>Tomography, Crack propagation</topic><topic>XRM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanaor, D.A.H.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kan, W.H.</creatorcontrib><creatorcontrib>Proust, G.</creatorcontrib><creatorcontrib>Foley, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanaor, D.A.H.</au><au>Hu, L.</au><au>Kan, W.H.</au><au>Proust, G.</au><au>Foley, M.</au><au>Karaman, I.</au><au>Radovic, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive performance and crack propagation in Al alloy/Ti2AlC composites</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>672</volume><spage>247</spage><epage>256</epage><pages>247-256</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.06.073</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-08, Vol.672, p.247-256 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02308363v1 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum base alloys Civil Engineering Compressive strength Crack propagation Cracks Engineering Sciences Fracture mechanics Materials Materials and structures in mechanics Matériaux composites et construction MAX phase Mechanics Mechanics of materials Phases Porosity Shrinkage Ti2AlC Tomography, Crack propagation XRM |
title | Compressive performance and crack propagation in Al alloy/Ti2AlC composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20performance%20and%20crack%20propagation%20in%20Al%20alloy/Ti2AlC%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Hanaor,%20D.A.H.&rft.date=2016-08-01&rft.volume=672&rft.spage=247&rft.epage=256&rft.pages=247-256&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.06.073&rft_dat=%3Cproquest_hal_p%3E1835588178%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835588178&rft_id=info:pmid/&rft_els_id=S0921509316307419&rfr_iscdi=true |