Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat
We consider an infinite chain of coupled harmonic oscillators whose Hamiltonian dynamics is perturbed by a random exchange of momentum between particles such that total energy and momentum are conserved, modeling collision between atoms. This random exchange is rarefied in the limit, that correspond...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2020-12, Vol.279 (12), p.108764, Article 108764 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 108764 |
container_title | Journal of functional analysis |
container_volume | 279 |
creator | Komorowski, Tomasz Olla, Stefano |
description | We consider an infinite chain of coupled harmonic oscillators whose Hamiltonian dynamics is perturbed by a random exchange of momentum between particles such that total energy and momentum are conserved, modeling collision between atoms. This random exchange is rarefied in the limit, that corresponds to the hypothesis that in the macroscopic unit time only a finite number of collisions takes place (the Boltzmann-Grad limit). Furthermore, the system is in contact with a Langevin thermostat at temperature T through a single particle. We prove that, after the hyperbolic space-time rescaling, the Wigner distribution, describing the energy density of phonons in space-frequency domain, converges to a positive energy density function W(t,y,k) that evolves according to a linear kinetic equation, with the interface condition at y=0 that corresponds to reflection, transmission and absorption of phonons caused by the presence of the thermostat. The paper extends the results of [15], where a harmonic chain (with no inter-particle scattering) in contact with a Langevin thermostat has been considered. |
doi_str_mv | 10.1016/j.jfa.2020.108764 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02305797v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123620303074</els_id><sourcerecordid>oai_HAL_hal_02305797v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-131deaf74daa2a74ca4ecb7febe2c6031449593ffd5530d399e087f729480ce73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-5euiarzZbPC2LumJBED2H2TSxKd1GkrDivzel4tHTMDPPOzAPQteUrCih1W2_6i2sGGFTv5aVOEELSuqqIHLNT9GCEMYKynh1ji5i7AmhtBLlAr0-u9Ekp_HgDi5h6wMGrDtwI_YWdxAOfsxbH7UbBkg-RPzlUpehT-_GhBsYP8wx06kzmY0J0iU6szBEc_Vbl-j94f5tuyual8en7aYpNJciFZTT1oCVogVgIIUGYfReWrM3TFeEUyHqsubWtmXJScvr2uTHrGS1WBNtJF-im_luB4P6DO4A4Vt5cGq3adQ0I4yTUtbySDNLZ1YHH2Mw9i9AiZoEql5lgWoSqGaBOXM3Z0x-4uhMUFmCGbVpXTA6qda7f9I_K1t4bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Komorowski, Tomasz ; Olla, Stefano</creator><creatorcontrib>Komorowski, Tomasz ; Olla, Stefano</creatorcontrib><description>We consider an infinite chain of coupled harmonic oscillators whose Hamiltonian dynamics is perturbed by a random exchange of momentum between particles such that total energy and momentum are conserved, modeling collision between atoms. This random exchange is rarefied in the limit, that corresponds to the hypothesis that in the macroscopic unit time only a finite number of collisions takes place (the Boltzmann-Grad limit). Furthermore, the system is in contact with a Langevin thermostat at temperature T through a single particle. We prove that, after the hyperbolic space-time rescaling, the Wigner distribution, describing the energy density of phonons in space-frequency domain, converges to a positive energy density function W(t,y,k) that evolves according to a linear kinetic equation, with the interface condition at y=0 that corresponds to reflection, transmission and absorption of phonons caused by the presence of the thermostat. The paper extends the results of [15], where a harmonic chain (with no inter-particle scattering) in contact with a Langevin thermostat has been considered.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2020.108764</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Condensed Matter ; Duhamel formula ; Harmonic chains with stochastic noise ; Linear kinetic equation with interface ; Mathematical Physics ; Mathematics ; Physics ; Probability ; Statistical Mechanics ; Wigner functions</subject><ispartof>Journal of functional analysis, 2020-12, Vol.279 (12), p.108764, Article 108764</ispartof><rights>2020 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-131deaf74daa2a74ca4ecb7febe2c6031449593ffd5530d399e087f729480ce73</citedby><cites>FETCH-LOGICAL-c374t-131deaf74daa2a74ca4ecb7febe2c6031449593ffd5530d399e087f729480ce73</cites><orcidid>0000-0003-0845-1861 ; 0000-0003-1564-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022123620303074$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02305797$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Komorowski, Tomasz</creatorcontrib><creatorcontrib>Olla, Stefano</creatorcontrib><title>Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat</title><title>Journal of functional analysis</title><description>We consider an infinite chain of coupled harmonic oscillators whose Hamiltonian dynamics is perturbed by a random exchange of momentum between particles such that total energy and momentum are conserved, modeling collision between atoms. This random exchange is rarefied in the limit, that corresponds to the hypothesis that in the macroscopic unit time only a finite number of collisions takes place (the Boltzmann-Grad limit). Furthermore, the system is in contact with a Langevin thermostat at temperature T through a single particle. We prove that, after the hyperbolic space-time rescaling, the Wigner distribution, describing the energy density of phonons in space-frequency domain, converges to a positive energy density function W(t,y,k) that evolves according to a linear kinetic equation, with the interface condition at y=0 that corresponds to reflection, transmission and absorption of phonons caused by the presence of the thermostat. The paper extends the results of [15], where a harmonic chain (with no inter-particle scattering) in contact with a Langevin thermostat has been considered.</description><subject>Condensed Matter</subject><subject>Duhamel formula</subject><subject>Harmonic chains with stochastic noise</subject><subject>Linear kinetic equation with interface</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Probability</subject><subject>Statistical Mechanics</subject><subject>Wigner functions</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-5euiarzZbPC2LumJBED2H2TSxKd1GkrDivzel4tHTMDPPOzAPQteUrCih1W2_6i2sGGFTv5aVOEELSuqqIHLNT9GCEMYKynh1ji5i7AmhtBLlAr0-u9Ekp_HgDi5h6wMGrDtwI_YWdxAOfsxbH7UbBkg-RPzlUpehT-_GhBsYP8wx06kzmY0J0iU6szBEc_Vbl-j94f5tuyual8en7aYpNJciFZTT1oCVogVgIIUGYfReWrM3TFeEUyHqsubWtmXJScvr2uTHrGS1WBNtJF-im_luB4P6DO4A4Vt5cGq3adQ0I4yTUtbySDNLZ1YHH2Mw9i9AiZoEql5lgWoSqGaBOXM3Z0x-4uhMUFmCGbVpXTA6qda7f9I_K1t4bg</recordid><startdate>20201225</startdate><enddate>20201225</enddate><creator>Komorowski, Tomasz</creator><creator>Olla, Stefano</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0845-1861</orcidid><orcidid>https://orcid.org/0000-0003-1564-0169</orcidid></search><sort><creationdate>20201225</creationdate><title>Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat</title><author>Komorowski, Tomasz ; Olla, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-131deaf74daa2a74ca4ecb7febe2c6031449593ffd5530d399e087f729480ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Condensed Matter</topic><topic>Duhamel formula</topic><topic>Harmonic chains with stochastic noise</topic><topic>Linear kinetic equation with interface</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Probability</topic><topic>Statistical Mechanics</topic><topic>Wigner functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komorowski, Tomasz</creatorcontrib><creatorcontrib>Olla, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komorowski, Tomasz</au><au>Olla, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat</atitle><jtitle>Journal of functional analysis</jtitle><date>2020-12-25</date><risdate>2020</risdate><volume>279</volume><issue>12</issue><spage>108764</spage><pages>108764-</pages><artnum>108764</artnum><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We consider an infinite chain of coupled harmonic oscillators whose Hamiltonian dynamics is perturbed by a random exchange of momentum between particles such that total energy and momentum are conserved, modeling collision between atoms. This random exchange is rarefied in the limit, that corresponds to the hypothesis that in the macroscopic unit time only a finite number of collisions takes place (the Boltzmann-Grad limit). Furthermore, the system is in contact with a Langevin thermostat at temperature T through a single particle. We prove that, after the hyperbolic space-time rescaling, the Wigner distribution, describing the energy density of phonons in space-frequency domain, converges to a positive energy density function W(t,y,k) that evolves according to a linear kinetic equation, with the interface condition at y=0 that corresponds to reflection, transmission and absorption of phonons caused by the presence of the thermostat. The paper extends the results of [15], where a harmonic chain (with no inter-particle scattering) in contact with a Langevin thermostat has been considered.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2020.108764</doi><orcidid>https://orcid.org/0000-0003-0845-1861</orcidid><orcidid>https://orcid.org/0000-0003-1564-0169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2020-12, Vol.279 (12), p.108764, Article 108764 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02305797v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Condensed Matter Duhamel formula Harmonic chains with stochastic noise Linear kinetic equation with interface Mathematical Physics Mathematics Physics Probability Statistical Mechanics Wigner functions |
title | Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20limit%20for%20a%20chain%20of%20harmonic%20oscillators%20with%20a%20point%20Langevin%20thermostat&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Komorowski,%20Tomasz&rft.date=2020-12-25&rft.volume=279&rft.issue=12&rft.spage=108764&rft.pages=108764-&rft.artnum=108764&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2020.108764&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02305797v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123620303074&rfr_iscdi=true |