Oscillations, travelling fronts and patterns in a supramolecular system
Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillati...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2018-11, Vol.13 (11), p.1021-1027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 11 |
container_start_page | 1021 |
container_title | Nature nanotechnology |
container_volume | 13 |
creator | Leira-Iglesias, Jorge Tassoni, Alessandra Adachi, Takuji Stich, Michael Hermans, Thomas M. |
description | Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport
1
. In vivo and in vitro size oscillations of individual microtubules
2
,
3
(dynamic instabilities) and collective oscillations
4
have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems
5
. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles
6
, micelles
7
or particles
8
rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH
7
–
9
), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst
6
,
10
). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials
11
that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots
12
.
A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor. |
doi_str_mv | 10.1038/s41565-018-0270-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02304108v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130051705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3h_AjRTcKFg9uTXtUsQbDLjRdTjNZLTSpmNOK_j2ZqiOILjK7Tt_cvIxdsThgoMsL0lxXegceJmDMJCrDbbLjSpzKSu9uZ6XZoftEb0BaFEJtc12JEghZcF32d0juaZtcWj6QOfZEPHDt20TXrJF7MNAGYZ5tsRh8DFQ1oQMMxqXEbu-9W5sMWb0SYPvDtjWAlvyh9_jPnu-vXm6vs9nj3cP11ez3ClVDblUC2m8qVyNzgiHTvF5IWqva-3U3ChXCOU0LwoATCuDIBSIinPUdVlKJ_fZ2ZT7iq1dxqbD-Gl7bOz91cyu9kBIUBzKD57Y04ldxv599DTYriGX2sPg-5Gs4AKMlqVYoSd_0Ld-jCF1kiiZPo4b0IniE-ViTxT9Yv0CDnZlxE5GbDJiV0asSjXH38lj3fn5uuJHQQLEBFA6Ci8-_l79f-oXSLWUJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130051705</pqid></control><display><type>article</type><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</creator><creatorcontrib>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</creatorcontrib><description>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport
1
. In vivo and in vitro size oscillations of individual microtubules
2
,
3
(dynamic instabilities) and collective oscillations
4
have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems
5
. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles
6
, micelles
7
or particles
8
rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH
7
–
9
), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst
6
,
10
). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials
11
that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots
12
.
A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-018-0270-4</identifier><identifier>PMID: 30323361</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/541 ; 639/638/541/960 ; Anchoring ; Chemical fuels ; Chemical Sciences ; Chemistry and Materials Science ; Communications systems ; Convection ; Depolymerization ; Diimide ; Dynamical systems ; Elongation ; Equilibrium conditions ; External stimuli ; Feedback ; Letter ; Materials Science ; Microtubules ; Nanotechnology ; Nanotechnology and Microengineering ; Negative feedback ; Nonlinear dynamics ; Nonlinear systems ; Nucleation ; Organic chemistry ; Oscillations ; Other ; Polymers ; Positive feedback ; Self-assembly ; Stimuli ; Supramolecular polymers</subject><ispartof>Nature nanotechnology, 2018-11, Vol.13 (11), p.1021-1027</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</citedby><cites>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</cites><orcidid>0000-0003-1121-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-018-0270-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-018-0270-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30323361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02304108$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leira-Iglesias, Jorge</creatorcontrib><creatorcontrib>Tassoni, Alessandra</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hermans, Thomas M.</creatorcontrib><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport
1
. In vivo and in vitro size oscillations of individual microtubules
2
,
3
(dynamic instabilities) and collective oscillations
4
have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems
5
. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles
6
, micelles
7
or particles
8
rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH
7
–
9
), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst
6
,
10
). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials
11
that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots
12
.
A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</description><subject>639/638/541</subject><subject>639/638/541/960</subject><subject>Anchoring</subject><subject>Chemical fuels</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Communications systems</subject><subject>Convection</subject><subject>Depolymerization</subject><subject>Diimide</subject><subject>Dynamical systems</subject><subject>Elongation</subject><subject>Equilibrium conditions</subject><subject>External stimuli</subject><subject>Feedback</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Microtubules</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Negative feedback</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Oscillations</subject><subject>Other</subject><subject>Polymers</subject><subject>Positive feedback</subject><subject>Self-assembly</subject><subject>Stimuli</subject><subject>Supramolecular polymers</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctKxDAUhoMo3h_AjRTcKFg9uTXtUsQbDLjRdTjNZLTSpmNOK_j2ZqiOILjK7Tt_cvIxdsThgoMsL0lxXegceJmDMJCrDbbLjSpzKSu9uZ6XZoftEb0BaFEJtc12JEghZcF32d0juaZtcWj6QOfZEPHDt20TXrJF7MNAGYZ5tsRh8DFQ1oQMMxqXEbu-9W5sMWb0SYPvDtjWAlvyh9_jPnu-vXm6vs9nj3cP11ez3ClVDblUC2m8qVyNzgiHTvF5IWqva-3U3ChXCOU0LwoATCuDIBSIinPUdVlKJ_fZ2ZT7iq1dxqbD-Gl7bOz91cyu9kBIUBzKD57Y04ldxv599DTYriGX2sPg-5Gs4AKMlqVYoSd_0Ld-jCF1kiiZPo4b0IniE-ViTxT9Yv0CDnZlxE5GbDJiV0asSjXH38lj3fn5uuJHQQLEBFA6Ci8-_l79f-oXSLWUJA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Leira-Iglesias, Jorge</creator><creator>Tassoni, Alessandra</creator><creator>Adachi, Takuji</creator><creator>Stich, Michael</creator><creator>Hermans, Thomas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1121-1754</orcidid></search><sort><creationdate>20181101</creationdate><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><author>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/541</topic><topic>639/638/541/960</topic><topic>Anchoring</topic><topic>Chemical fuels</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Communications systems</topic><topic>Convection</topic><topic>Depolymerization</topic><topic>Diimide</topic><topic>Dynamical systems</topic><topic>Elongation</topic><topic>Equilibrium conditions</topic><topic>External stimuli</topic><topic>Feedback</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Microtubules</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Negative feedback</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Oscillations</topic><topic>Other</topic><topic>Polymers</topic><topic>Positive feedback</topic><topic>Self-assembly</topic><topic>Stimuli</topic><topic>Supramolecular polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leira-Iglesias, Jorge</creatorcontrib><creatorcontrib>Tassoni, Alessandra</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hermans, Thomas M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leira-Iglesias, Jorge</au><au>Tassoni, Alessandra</au><au>Adachi, Takuji</au><au>Stich, Michael</au><au>Hermans, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations, travelling fronts and patterns in a supramolecular system</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>1021</spage><epage>1027</epage><pages>1021-1027</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport
1
. In vivo and in vitro size oscillations of individual microtubules
2
,
3
(dynamic instabilities) and collective oscillations
4
have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems
5
. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles
6
, micelles
7
or particles
8
rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH
7
–
9
), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst
6
,
10
). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials
11
that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots
12
.
A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30323361</pmid><doi>10.1038/s41565-018-0270-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1121-1754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2018-11, Vol.13 (11), p.1021-1027 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02304108v1 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/638/541 639/638/541/960 Anchoring Chemical fuels Chemical Sciences Chemistry and Materials Science Communications systems Convection Depolymerization Diimide Dynamical systems Elongation Equilibrium conditions External stimuli Feedback Letter Materials Science Microtubules Nanotechnology Nanotechnology and Microengineering Negative feedback Nonlinear dynamics Nonlinear systems Nucleation Organic chemistry Oscillations Other Polymers Positive feedback Self-assembly Stimuli Supramolecular polymers |
title | Oscillations, travelling fronts and patterns in a supramolecular system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations,%20travelling%20fronts%20and%20patterns%20in%20a%20supramolecular%20system&rft.jtitle=Nature%20nanotechnology&rft.au=Leira-Iglesias,%20Jorge&rft.date=2018-11-01&rft.volume=13&rft.issue=11&rft.spage=1021&rft.epage=1027&rft.pages=1021-1027&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-018-0270-4&rft_dat=%3Cproquest_hal_p%3E2130051705%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130051705&rft_id=info:pmid/30323361&rfr_iscdi=true |