Oscillations, travelling fronts and patterns in a supramolecular system

Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2018-11, Vol.13 (11), p.1021-1027
Hauptverfasser: Leira-Iglesias, Jorge, Tassoni, Alessandra, Adachi, Takuji, Stich, Michael, Hermans, Thomas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027
container_issue 11
container_start_page 1021
container_title Nature nanotechnology
container_volume 13
creator Leira-Iglesias, Jorge
Tassoni, Alessandra
Adachi, Takuji
Stich, Michael
Hermans, Thomas M.
description Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillations 4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems 5 . Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles 6 , micelles 7 or particles 8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH 7 – 9 ), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst 6 , 10 ). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials 11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots 12 . A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.
doi_str_mv 10.1038/s41565-018-0270-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02304108v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2130051705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3h_AjRTcKFg9uTXtUsQbDLjRdTjNZLTSpmNOK_j2ZqiOILjK7Tt_cvIxdsThgoMsL0lxXegceJmDMJCrDbbLjSpzKSu9uZ6XZoftEb0BaFEJtc12JEghZcF32d0juaZtcWj6QOfZEPHDt20TXrJF7MNAGYZ5tsRh8DFQ1oQMMxqXEbu-9W5sMWb0SYPvDtjWAlvyh9_jPnu-vXm6vs9nj3cP11ez3ClVDblUC2m8qVyNzgiHTvF5IWqva-3U3ChXCOU0LwoATCuDIBSIinPUdVlKJ_fZ2ZT7iq1dxqbD-Gl7bOz91cyu9kBIUBzKD57Y04ldxv599DTYriGX2sPg-5Gs4AKMlqVYoSd_0Ld-jCF1kiiZPo4b0IniE-ViTxT9Yv0CDnZlxE5GbDJiV0asSjXH38lj3fn5uuJHQQLEBFA6Ci8-_l79f-oXSLWUJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130051705</pqid></control><display><type>article</type><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</creator><creatorcontrib>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</creatorcontrib><description>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillations 4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems 5 . Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles 6 , micelles 7 or particles 8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH 7 – 9 ), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst 6 , 10 ). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials 11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots 12 . A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-018-0270-4</identifier><identifier>PMID: 30323361</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/541 ; 639/638/541/960 ; Anchoring ; Chemical fuels ; Chemical Sciences ; Chemistry and Materials Science ; Communications systems ; Convection ; Depolymerization ; Diimide ; Dynamical systems ; Elongation ; Equilibrium conditions ; External stimuli ; Feedback ; Letter ; Materials Science ; Microtubules ; Nanotechnology ; Nanotechnology and Microengineering ; Negative feedback ; Nonlinear dynamics ; Nonlinear systems ; Nucleation ; Organic chemistry ; Oscillations ; Other ; Polymers ; Positive feedback ; Self-assembly ; Stimuli ; Supramolecular polymers</subject><ispartof>Nature nanotechnology, 2018-11, Vol.13 (11), p.1021-1027</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</citedby><cites>FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</cites><orcidid>0000-0003-1121-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-018-0270-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-018-0270-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30323361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02304108$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leira-Iglesias, Jorge</creatorcontrib><creatorcontrib>Tassoni, Alessandra</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hermans, Thomas M.</creatorcontrib><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillations 4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems 5 . Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles 6 , micelles 7 or particles 8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH 7 – 9 ), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst 6 , 10 ). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials 11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots 12 . A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</description><subject>639/638/541</subject><subject>639/638/541/960</subject><subject>Anchoring</subject><subject>Chemical fuels</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Communications systems</subject><subject>Convection</subject><subject>Depolymerization</subject><subject>Diimide</subject><subject>Dynamical systems</subject><subject>Elongation</subject><subject>Equilibrium conditions</subject><subject>External stimuli</subject><subject>Feedback</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Microtubules</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Negative feedback</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Oscillations</subject><subject>Other</subject><subject>Polymers</subject><subject>Positive feedback</subject><subject>Self-assembly</subject><subject>Stimuli</subject><subject>Supramolecular polymers</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctKxDAUhoMo3h_AjRTcKFg9uTXtUsQbDLjRdTjNZLTSpmNOK_j2ZqiOILjK7Tt_cvIxdsThgoMsL0lxXegceJmDMJCrDbbLjSpzKSu9uZ6XZoftEb0BaFEJtc12JEghZcF32d0juaZtcWj6QOfZEPHDt20TXrJF7MNAGYZ5tsRh8DFQ1oQMMxqXEbu-9W5sMWb0SYPvDtjWAlvyh9_jPnu-vXm6vs9nj3cP11ez3ClVDblUC2m8qVyNzgiHTvF5IWqva-3U3ChXCOU0LwoATCuDIBSIinPUdVlKJ_fZ2ZT7iq1dxqbD-Gl7bOz91cyu9kBIUBzKD57Y04ldxv599DTYriGX2sPg-5Gs4AKMlqVYoSd_0Ld-jCF1kiiZPo4b0IniE-ViTxT9Yv0CDnZlxE5GbDJiV0asSjXH38lj3fn5uuJHQQLEBFA6Ci8-_l79f-oXSLWUJA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Leira-Iglesias, Jorge</creator><creator>Tassoni, Alessandra</creator><creator>Adachi, Takuji</creator><creator>Stich, Michael</creator><creator>Hermans, Thomas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1121-1754</orcidid></search><sort><creationdate>20181101</creationdate><title>Oscillations, travelling fronts and patterns in a supramolecular system</title><author>Leira-Iglesias, Jorge ; Tassoni, Alessandra ; Adachi, Takuji ; Stich, Michael ; Hermans, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-34f37e79cbac72cac41d62be5b5c4d74c624c516600a74c7a02402911a5b883c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/541</topic><topic>639/638/541/960</topic><topic>Anchoring</topic><topic>Chemical fuels</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Communications systems</topic><topic>Convection</topic><topic>Depolymerization</topic><topic>Diimide</topic><topic>Dynamical systems</topic><topic>Elongation</topic><topic>Equilibrium conditions</topic><topic>External stimuli</topic><topic>Feedback</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Microtubules</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Negative feedback</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Oscillations</topic><topic>Other</topic><topic>Polymers</topic><topic>Positive feedback</topic><topic>Self-assembly</topic><topic>Stimuli</topic><topic>Supramolecular polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leira-Iglesias, Jorge</creatorcontrib><creatorcontrib>Tassoni, Alessandra</creatorcontrib><creatorcontrib>Adachi, Takuji</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hermans, Thomas M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leira-Iglesias, Jorge</au><au>Tassoni, Alessandra</au><au>Adachi, Takuji</au><au>Stich, Michael</au><au>Hermans, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations, travelling fronts and patterns in a supramolecular system</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>1021</spage><epage>1027</epage><pages>1021-1027</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport 1 . In vivo and in vitro size oscillations of individual microtubules 2 , 3 (dynamic instabilities) and collective oscillations 4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems 5 . Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles 6 , micelles 7 or particles 8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH 7 – 9 ), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst 6 , 10 ). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials 11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots 12 . A perylene diimide derivative shows nonlinear chemical dynamics when chemically fuelled in a semi-batch reactor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30323361</pmid><doi>10.1038/s41565-018-0270-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1121-1754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2018-11, Vol.13 (11), p.1021-1027
issn 1748-3387
1748-3395
language eng
recordid cdi_hal_primary_oai_HAL_hal_02304108v1
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/638/541
639/638/541/960
Anchoring
Chemical fuels
Chemical Sciences
Chemistry and Materials Science
Communications systems
Convection
Depolymerization
Diimide
Dynamical systems
Elongation
Equilibrium conditions
External stimuli
Feedback
Letter
Materials Science
Microtubules
Nanotechnology
Nanotechnology and Microengineering
Negative feedback
Nonlinear dynamics
Nonlinear systems
Nucleation
Organic chemistry
Oscillations
Other
Polymers
Positive feedback
Self-assembly
Stimuli
Supramolecular polymers
title Oscillations, travelling fronts and patterns in a supramolecular system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations,%20travelling%20fronts%20and%20patterns%20in%20a%20supramolecular%20system&rft.jtitle=Nature%20nanotechnology&rft.au=Leira-Iglesias,%20Jorge&rft.date=2018-11-01&rft.volume=13&rft.issue=11&rft.spage=1021&rft.epage=1027&rft.pages=1021-1027&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-018-0270-4&rft_dat=%3Cproquest_hal_p%3E2130051705%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130051705&rft_id=info:pmid/30323361&rfr_iscdi=true