Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities

Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2020-03, Vol.228 (3), p.e13394-n/a
Hauptverfasser: Kammoun, Malek, Piquereau, Jerome, Nadal‐Desbarats, Lydie, Même, Sandra, Beuvin, Maud, Bonne, Gisèle, Veksler, Vladimir, Le Fur, Yann, Pouletaut, Philippe, Même, William, Szeremeta, Frederic, Constans, Jean‐Marc, Bruinsma, Elizabeth S., Nelson Holte, Molly H., Najafova, Zeynab, Johnsen, Steven A., Subramaniam, Malayannan, Hawse, John R., Bensamoun, Sabine F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e13394
container_title Acta Physiologica
container_volume 228
creator Kammoun, Malek
Piquereau, Jerome
Nadal‐Desbarats, Lydie
Même, Sandra
Beuvin, Maud
Bonne, Gisèle
Veksler, Vladimir
Le Fur, Yann
Pouletaut, Philippe
Même, William
Szeremeta, Frederic
Constans, Jean‐Marc
Bruinsma, Elizabeth S.
Nelson Holte, Molly H.
Najafova, Zeynab
Johnsen, Steven A.
Subramaniam, Malayannan
Hawse, John R.
Bensamoun, Sabine F.
description Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. Results Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. Conclusion Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
doi_str_mv 10.1111/apha.13394
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02304067v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358162153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</originalsourceid><addsrcrecordid>eNp90UFv2yAYBmA0dVqrrpf9gAmpl65SOj7AYB-jam0qResO3Rl9xnihwiY1drb--5K5y6GHcQE-PXoFegn5BOwK8vqK2w1egRCVfEdOQMtyARrU0eHMymNyltIjYww4CMn5B3IsoFAMFJyQ--9x5wIdYnA0tvTBu19AfU-7Kdk86tyIdQw-dRT7hnZ-jHYT-2bwGGj84xsc_c5Ri1u0fvQufSTvWwzJnb3up-TnzbeH69VifX97d71cL6zkWi5UU0teV22rGedKFEpVZV1oiSVTCgveAjAta2y0BddUrhFYO4vc1ZZJma-n5Mucu8FgtoPvcHg2Eb1ZLddmP2NcMMmU3vFsL2a7HeLT5NJoOp-sCwF7F6dkOK8qEFoAy_T8DX2M09DnnxguihIUh0JkdTkrO8SUBtceXgDM7Fsx-1bM31Yy_vwaOdWdaw70XwcZwAx---Ce_xNllj9Wyzn0BejrlQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358162153</pqid></control><display><type>article</type><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><source>Access via Wiley Online Library</source><creator>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</creator><creatorcontrib>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</creatorcontrib><description>Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. Results Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. Conclusion Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13394</identifier><identifier>PMID: 31560161</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biochemistry, Molecular Biology ; Citrate synthase ; Cytochrome-c oxidase ; Electron transport chain ; Enzymatic activity ; Gene expression ; Human health and pathology ; Immunoblotting ; Intolerance ; Klf10 ; Life Sciences ; Magnetic resonance imaging ; Metabolism ; Mitochondria ; Muscles ; NMR ; Nuclear magnetic resonance ; Oxidative metabolism ; Phenotypes ; Phosphocreatine ; Ribonucleic acid ; RNA ; Signal transduction ; Skeletal muscle ; Soleus muscle ; Succinate dehydrogenase ; Tieg1 ; Tissues and Organs ; Transmission electron microscopy ; Ultrastructure</subject><ispartof>Acta Physiologica, 2020-03, Vol.228 (3), p.e13394-n/a</ispartof><rights>2019 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd</rights><rights>2019 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 Scandinavian Physiological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</citedby><cites>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</cites><orcidid>0000-0002-6019-8683 ; 0000-0002-8869-9594 ; 0000-0003-4290-0173 ; 0000-0003-3406-470X ; 0000-0002-6751-4378 ; 0000-0001-6355-1713 ; 0000-0001-9700-040X ; 0000-0003-4403-5566 ; 0000-0001-7570-0851 ; 0000-0002-7938-438X ; 0000-0003-1772-6740 ; 0000-0003-1198-5805 ; 0000-0002-2516-3258 ; 0000-0002-1714-1382 ; 0000-0002-3765-0889 ; 0000-0001-8770-6951 ; 0000-0002-5908-761X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31560161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://utc.hal.science/hal-02304067$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kammoun, Malek</creatorcontrib><creatorcontrib>Piquereau, Jerome</creatorcontrib><creatorcontrib>Nadal‐Desbarats, Lydie</creatorcontrib><creatorcontrib>Même, Sandra</creatorcontrib><creatorcontrib>Beuvin, Maud</creatorcontrib><creatorcontrib>Bonne, Gisèle</creatorcontrib><creatorcontrib>Veksler, Vladimir</creatorcontrib><creatorcontrib>Le Fur, Yann</creatorcontrib><creatorcontrib>Pouletaut, Philippe</creatorcontrib><creatorcontrib>Même, William</creatorcontrib><creatorcontrib>Szeremeta, Frederic</creatorcontrib><creatorcontrib>Constans, Jean‐Marc</creatorcontrib><creatorcontrib>Bruinsma, Elizabeth S.</creatorcontrib><creatorcontrib>Nelson Holte, Molly H.</creatorcontrib><creatorcontrib>Najafova, Zeynab</creatorcontrib><creatorcontrib>Johnsen, Steven A.</creatorcontrib><creatorcontrib>Subramaniam, Malayannan</creatorcontrib><creatorcontrib>Hawse, John R.</creatorcontrib><creatorcontrib>Bensamoun, Sabine F.</creatorcontrib><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. Results Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. Conclusion Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</description><subject>Biochemistry, Molecular Biology</subject><subject>Citrate synthase</subject><subject>Cytochrome-c oxidase</subject><subject>Electron transport chain</subject><subject>Enzymatic activity</subject><subject>Gene expression</subject><subject>Human health and pathology</subject><subject>Immunoblotting</subject><subject>Intolerance</subject><subject>Klf10</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Muscles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidative metabolism</subject><subject>Phenotypes</subject><subject>Phosphocreatine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>Soleus muscle</subject><subject>Succinate dehydrogenase</subject><subject>Tieg1</subject><subject>Tissues and Organs</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UFv2yAYBmA0dVqrrpf9gAmpl65SOj7AYB-jam0qResO3Rl9xnihwiY1drb--5K5y6GHcQE-PXoFegn5BOwK8vqK2w1egRCVfEdOQMtyARrU0eHMymNyltIjYww4CMn5B3IsoFAMFJyQ--9x5wIdYnA0tvTBu19AfU-7Kdk86tyIdQw-dRT7hnZ-jHYT-2bwGGj84xsc_c5Ri1u0fvQufSTvWwzJnb3up-TnzbeH69VifX97d71cL6zkWi5UU0teV22rGedKFEpVZV1oiSVTCgveAjAta2y0BddUrhFYO4vc1ZZJma-n5Mucu8FgtoPvcHg2Eb1ZLddmP2NcMMmU3vFsL2a7HeLT5NJoOp-sCwF7F6dkOK8qEFoAy_T8DX2M09DnnxguihIUh0JkdTkrO8SUBtceXgDM7Fsx-1bM31Yy_vwaOdWdaw70XwcZwAx---Ce_xNllj9Wyzn0BejrlQw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Kammoun, Malek</creator><creator>Piquereau, Jerome</creator><creator>Nadal‐Desbarats, Lydie</creator><creator>Même, Sandra</creator><creator>Beuvin, Maud</creator><creator>Bonne, Gisèle</creator><creator>Veksler, Vladimir</creator><creator>Le Fur, Yann</creator><creator>Pouletaut, Philippe</creator><creator>Même, William</creator><creator>Szeremeta, Frederic</creator><creator>Constans, Jean‐Marc</creator><creator>Bruinsma, Elizabeth S.</creator><creator>Nelson Holte, Molly H.</creator><creator>Najafova, Zeynab</creator><creator>Johnsen, Steven A.</creator><creator>Subramaniam, Malayannan</creator><creator>Hawse, John R.</creator><creator>Bensamoun, Sabine F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6019-8683</orcidid><orcidid>https://orcid.org/0000-0002-8869-9594</orcidid><orcidid>https://orcid.org/0000-0003-4290-0173</orcidid><orcidid>https://orcid.org/0000-0003-3406-470X</orcidid><orcidid>https://orcid.org/0000-0002-6751-4378</orcidid><orcidid>https://orcid.org/0000-0001-6355-1713</orcidid><orcidid>https://orcid.org/0000-0001-9700-040X</orcidid><orcidid>https://orcid.org/0000-0003-4403-5566</orcidid><orcidid>https://orcid.org/0000-0001-7570-0851</orcidid><orcidid>https://orcid.org/0000-0002-7938-438X</orcidid><orcidid>https://orcid.org/0000-0003-1772-6740</orcidid><orcidid>https://orcid.org/0000-0003-1198-5805</orcidid><orcidid>https://orcid.org/0000-0002-2516-3258</orcidid><orcidid>https://orcid.org/0000-0002-1714-1382</orcidid><orcidid>https://orcid.org/0000-0002-3765-0889</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-5908-761X</orcidid></search><sort><creationdate>202003</creationdate><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><author>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Citrate synthase</topic><topic>Cytochrome-c oxidase</topic><topic>Electron transport chain</topic><topic>Enzymatic activity</topic><topic>Gene expression</topic><topic>Human health and pathology</topic><topic>Immunoblotting</topic><topic>Intolerance</topic><topic>Klf10</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Muscles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidative metabolism</topic><topic>Phenotypes</topic><topic>Phosphocreatine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>Soleus muscle</topic><topic>Succinate dehydrogenase</topic><topic>Tieg1</topic><topic>Tissues and Organs</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kammoun, Malek</creatorcontrib><creatorcontrib>Piquereau, Jerome</creatorcontrib><creatorcontrib>Nadal‐Desbarats, Lydie</creatorcontrib><creatorcontrib>Même, Sandra</creatorcontrib><creatorcontrib>Beuvin, Maud</creatorcontrib><creatorcontrib>Bonne, Gisèle</creatorcontrib><creatorcontrib>Veksler, Vladimir</creatorcontrib><creatorcontrib>Le Fur, Yann</creatorcontrib><creatorcontrib>Pouletaut, Philippe</creatorcontrib><creatorcontrib>Même, William</creatorcontrib><creatorcontrib>Szeremeta, Frederic</creatorcontrib><creatorcontrib>Constans, Jean‐Marc</creatorcontrib><creatorcontrib>Bruinsma, Elizabeth S.</creatorcontrib><creatorcontrib>Nelson Holte, Molly H.</creatorcontrib><creatorcontrib>Najafova, Zeynab</creatorcontrib><creatorcontrib>Johnsen, Steven A.</creatorcontrib><creatorcontrib>Subramaniam, Malayannan</creatorcontrib><creatorcontrib>Hawse, John R.</creatorcontrib><creatorcontrib>Bensamoun, Sabine F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kammoun, Malek</au><au>Piquereau, Jerome</au><au>Nadal‐Desbarats, Lydie</au><au>Même, Sandra</au><au>Beuvin, Maud</au><au>Bonne, Gisèle</au><au>Veksler, Vladimir</au><au>Le Fur, Yann</au><au>Pouletaut, Philippe</au><au>Même, William</au><au>Szeremeta, Frederic</au><au>Constans, Jean‐Marc</au><au>Bruinsma, Elizabeth S.</au><au>Nelson Holte, Molly H.</au><au>Najafova, Zeynab</au><au>Johnsen, Steven A.</au><au>Subramaniam, Malayannan</au><au>Hawse, John R.</au><au>Bensamoun, Sabine F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2020-03</date><risdate>2020</risdate><volume>228</volume><issue>3</issue><spage>e13394</spage><epage>n/a</epage><pages>e13394-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. Results Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. Conclusion Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31560161</pmid><doi>10.1111/apha.13394</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6019-8683</orcidid><orcidid>https://orcid.org/0000-0002-8869-9594</orcidid><orcidid>https://orcid.org/0000-0003-4290-0173</orcidid><orcidid>https://orcid.org/0000-0003-3406-470X</orcidid><orcidid>https://orcid.org/0000-0002-6751-4378</orcidid><orcidid>https://orcid.org/0000-0001-6355-1713</orcidid><orcidid>https://orcid.org/0000-0001-9700-040X</orcidid><orcidid>https://orcid.org/0000-0003-4403-5566</orcidid><orcidid>https://orcid.org/0000-0001-7570-0851</orcidid><orcidid>https://orcid.org/0000-0002-7938-438X</orcidid><orcidid>https://orcid.org/0000-0003-1772-6740</orcidid><orcidid>https://orcid.org/0000-0003-1198-5805</orcidid><orcidid>https://orcid.org/0000-0002-2516-3258</orcidid><orcidid>https://orcid.org/0000-0002-1714-1382</orcidid><orcidid>https://orcid.org/0000-0002-3765-0889</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-5908-761X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2020-03, Vol.228 (3), p.e13394-n/a
issn 1748-1708
1748-1716
language eng
recordid cdi_hal_primary_oai_HAL_hal_02304067v2
source Access via Wiley Online Library
subjects Biochemistry, Molecular Biology
Citrate synthase
Cytochrome-c oxidase
Electron transport chain
Enzymatic activity
Gene expression
Human health and pathology
Immunoblotting
Intolerance
Klf10
Life Sciences
Magnetic resonance imaging
Metabolism
Mitochondria
Muscles
NMR
Nuclear magnetic resonance
Oxidative metabolism
Phenotypes
Phosphocreatine
Ribonucleic acid
RNA
Signal transduction
Skeletal muscle
Soleus muscle
Succinate dehydrogenase
Tieg1
Tissues and Organs
Transmission electron microscopy
Ultrastructure
title Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20role%20of%20Tieg1%20in%20muscle%20metabolism%20and%20mitochondrial%20oxidative%20capacities&rft.jtitle=Acta%20Physiologica&rft.au=Kammoun,%20Malek&rft.date=2020-03&rft.volume=228&rft.issue=3&rft.spage=e13394&rft.epage=n/a&rft.pages=e13394-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13394&rft_dat=%3Cproquest_hal_p%3E2358162153%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358162153&rft_id=info:pmid/31560161&rfr_iscdi=true