Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities
Aim Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. Methods We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructur...
Gespeichert in:
Veröffentlicht in: | Acta Physiologica 2020-03, Vol.228 (3), p.e13394-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e13394 |
container_title | Acta Physiologica |
container_volume | 228 |
creator | Kammoun, Malek Piquereau, Jerome Nadal‐Desbarats, Lydie Même, Sandra Beuvin, Maud Bonne, Gisèle Veksler, Vladimir Le Fur, Yann Pouletaut, Philippe Même, William Szeremeta, Frederic Constans, Jean‐Marc Bruinsma, Elizabeth S. Nelson Holte, Molly H. Najafova, Zeynab Johnsen, Steven A. Subramaniam, Malayannan Hawse, John R. Bensamoun, Sabine F. |
description | Aim
Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.
Methods
We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.
Results
Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.
Conclusion
Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence. |
doi_str_mv | 10.1111/apha.13394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02304067v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358162153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</originalsourceid><addsrcrecordid>eNp90UFv2yAYBmA0dVqrrpf9gAmpl65SOj7AYB-jam0qResO3Rl9xnihwiY1drb--5K5y6GHcQE-PXoFegn5BOwK8vqK2w1egRCVfEdOQMtyARrU0eHMymNyltIjYww4CMn5B3IsoFAMFJyQ--9x5wIdYnA0tvTBu19AfU-7Kdk86tyIdQw-dRT7hnZ-jHYT-2bwGGj84xsc_c5Ri1u0fvQufSTvWwzJnb3up-TnzbeH69VifX97d71cL6zkWi5UU0teV22rGedKFEpVZV1oiSVTCgveAjAta2y0BddUrhFYO4vc1ZZJma-n5Mucu8FgtoPvcHg2Eb1ZLddmP2NcMMmU3vFsL2a7HeLT5NJoOp-sCwF7F6dkOK8qEFoAy_T8DX2M09DnnxguihIUh0JkdTkrO8SUBtceXgDM7Fsx-1bM31Yy_vwaOdWdaw70XwcZwAx---Ce_xNllj9Wyzn0BejrlQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358162153</pqid></control><display><type>article</type><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><source>Access via Wiley Online Library</source><creator>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</creator><creatorcontrib>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</creatorcontrib><description>Aim
Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.
Methods
We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.
Results
Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.
Conclusion
Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13394</identifier><identifier>PMID: 31560161</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biochemistry, Molecular Biology ; Citrate synthase ; Cytochrome-c oxidase ; Electron transport chain ; Enzymatic activity ; Gene expression ; Human health and pathology ; Immunoblotting ; Intolerance ; Klf10 ; Life Sciences ; Magnetic resonance imaging ; Metabolism ; Mitochondria ; Muscles ; NMR ; Nuclear magnetic resonance ; Oxidative metabolism ; Phenotypes ; Phosphocreatine ; Ribonucleic acid ; RNA ; Signal transduction ; Skeletal muscle ; Soleus muscle ; Succinate dehydrogenase ; Tieg1 ; Tissues and Organs ; Transmission electron microscopy ; Ultrastructure</subject><ispartof>Acta Physiologica, 2020-03, Vol.228 (3), p.e13394-n/a</ispartof><rights>2019 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd</rights><rights>2019 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 Scandinavian Physiological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</citedby><cites>FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</cites><orcidid>0000-0002-6019-8683 ; 0000-0002-8869-9594 ; 0000-0003-4290-0173 ; 0000-0003-3406-470X ; 0000-0002-6751-4378 ; 0000-0001-6355-1713 ; 0000-0001-9700-040X ; 0000-0003-4403-5566 ; 0000-0001-7570-0851 ; 0000-0002-7938-438X ; 0000-0003-1772-6740 ; 0000-0003-1198-5805 ; 0000-0002-2516-3258 ; 0000-0002-1714-1382 ; 0000-0002-3765-0889 ; 0000-0001-8770-6951 ; 0000-0002-5908-761X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31560161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://utc.hal.science/hal-02304067$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kammoun, Malek</creatorcontrib><creatorcontrib>Piquereau, Jerome</creatorcontrib><creatorcontrib>Nadal‐Desbarats, Lydie</creatorcontrib><creatorcontrib>Même, Sandra</creatorcontrib><creatorcontrib>Beuvin, Maud</creatorcontrib><creatorcontrib>Bonne, Gisèle</creatorcontrib><creatorcontrib>Veksler, Vladimir</creatorcontrib><creatorcontrib>Le Fur, Yann</creatorcontrib><creatorcontrib>Pouletaut, Philippe</creatorcontrib><creatorcontrib>Même, William</creatorcontrib><creatorcontrib>Szeremeta, Frederic</creatorcontrib><creatorcontrib>Constans, Jean‐Marc</creatorcontrib><creatorcontrib>Bruinsma, Elizabeth S.</creatorcontrib><creatorcontrib>Nelson Holte, Molly H.</creatorcontrib><creatorcontrib>Najafova, Zeynab</creatorcontrib><creatorcontrib>Johnsen, Steven A.</creatorcontrib><creatorcontrib>Subramaniam, Malayannan</creatorcontrib><creatorcontrib>Hawse, John R.</creatorcontrib><creatorcontrib>Bensamoun, Sabine F.</creatorcontrib><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim
Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.
Methods
We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.
Results
Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.
Conclusion
Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</description><subject>Biochemistry, Molecular Biology</subject><subject>Citrate synthase</subject><subject>Cytochrome-c oxidase</subject><subject>Electron transport chain</subject><subject>Enzymatic activity</subject><subject>Gene expression</subject><subject>Human health and pathology</subject><subject>Immunoblotting</subject><subject>Intolerance</subject><subject>Klf10</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Muscles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidative metabolism</subject><subject>Phenotypes</subject><subject>Phosphocreatine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Skeletal muscle</subject><subject>Soleus muscle</subject><subject>Succinate dehydrogenase</subject><subject>Tieg1</subject><subject>Tissues and Organs</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UFv2yAYBmA0dVqrrpf9gAmpl65SOj7AYB-jam0qResO3Rl9xnihwiY1drb--5K5y6GHcQE-PXoFegn5BOwK8vqK2w1egRCVfEdOQMtyARrU0eHMymNyltIjYww4CMn5B3IsoFAMFJyQ--9x5wIdYnA0tvTBu19AfU-7Kdk86tyIdQw-dRT7hnZ-jHYT-2bwGGj84xsc_c5Ri1u0fvQufSTvWwzJnb3up-TnzbeH69VifX97d71cL6zkWi5UU0teV22rGedKFEpVZV1oiSVTCgveAjAta2y0BddUrhFYO4vc1ZZJma-n5Mucu8FgtoPvcHg2Eb1ZLddmP2NcMMmU3vFsL2a7HeLT5NJoOp-sCwF7F6dkOK8qEFoAy_T8DX2M09DnnxguihIUh0JkdTkrO8SUBtceXgDM7Fsx-1bM31Yy_vwaOdWdaw70XwcZwAx---Ce_xNllj9Wyzn0BejrlQw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Kammoun, Malek</creator><creator>Piquereau, Jerome</creator><creator>Nadal‐Desbarats, Lydie</creator><creator>Même, Sandra</creator><creator>Beuvin, Maud</creator><creator>Bonne, Gisèle</creator><creator>Veksler, Vladimir</creator><creator>Le Fur, Yann</creator><creator>Pouletaut, Philippe</creator><creator>Même, William</creator><creator>Szeremeta, Frederic</creator><creator>Constans, Jean‐Marc</creator><creator>Bruinsma, Elizabeth S.</creator><creator>Nelson Holte, Molly H.</creator><creator>Najafova, Zeynab</creator><creator>Johnsen, Steven A.</creator><creator>Subramaniam, Malayannan</creator><creator>Hawse, John R.</creator><creator>Bensamoun, Sabine F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6019-8683</orcidid><orcidid>https://orcid.org/0000-0002-8869-9594</orcidid><orcidid>https://orcid.org/0000-0003-4290-0173</orcidid><orcidid>https://orcid.org/0000-0003-3406-470X</orcidid><orcidid>https://orcid.org/0000-0002-6751-4378</orcidid><orcidid>https://orcid.org/0000-0001-6355-1713</orcidid><orcidid>https://orcid.org/0000-0001-9700-040X</orcidid><orcidid>https://orcid.org/0000-0003-4403-5566</orcidid><orcidid>https://orcid.org/0000-0001-7570-0851</orcidid><orcidid>https://orcid.org/0000-0002-7938-438X</orcidid><orcidid>https://orcid.org/0000-0003-1772-6740</orcidid><orcidid>https://orcid.org/0000-0003-1198-5805</orcidid><orcidid>https://orcid.org/0000-0002-2516-3258</orcidid><orcidid>https://orcid.org/0000-0002-1714-1382</orcidid><orcidid>https://orcid.org/0000-0002-3765-0889</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-5908-761X</orcidid></search><sort><creationdate>202003</creationdate><title>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</title><author>Kammoun, Malek ; Piquereau, Jerome ; Nadal‐Desbarats, Lydie ; Même, Sandra ; Beuvin, Maud ; Bonne, Gisèle ; Veksler, Vladimir ; Le Fur, Yann ; Pouletaut, Philippe ; Même, William ; Szeremeta, Frederic ; Constans, Jean‐Marc ; Bruinsma, Elizabeth S. ; Nelson Holte, Molly H. ; Najafova, Zeynab ; Johnsen, Steven A. ; Subramaniam, Malayannan ; Hawse, John R. ; Bensamoun, Sabine F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4274-6db42b9ff70226356698b574a8066a52f11074bad7c1ed9ed3abeca2ebc044ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Citrate synthase</topic><topic>Cytochrome-c oxidase</topic><topic>Electron transport chain</topic><topic>Enzymatic activity</topic><topic>Gene expression</topic><topic>Human health and pathology</topic><topic>Immunoblotting</topic><topic>Intolerance</topic><topic>Klf10</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Muscles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidative metabolism</topic><topic>Phenotypes</topic><topic>Phosphocreatine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Skeletal muscle</topic><topic>Soleus muscle</topic><topic>Succinate dehydrogenase</topic><topic>Tieg1</topic><topic>Tissues and Organs</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kammoun, Malek</creatorcontrib><creatorcontrib>Piquereau, Jerome</creatorcontrib><creatorcontrib>Nadal‐Desbarats, Lydie</creatorcontrib><creatorcontrib>Même, Sandra</creatorcontrib><creatorcontrib>Beuvin, Maud</creatorcontrib><creatorcontrib>Bonne, Gisèle</creatorcontrib><creatorcontrib>Veksler, Vladimir</creatorcontrib><creatorcontrib>Le Fur, Yann</creatorcontrib><creatorcontrib>Pouletaut, Philippe</creatorcontrib><creatorcontrib>Même, William</creatorcontrib><creatorcontrib>Szeremeta, Frederic</creatorcontrib><creatorcontrib>Constans, Jean‐Marc</creatorcontrib><creatorcontrib>Bruinsma, Elizabeth S.</creatorcontrib><creatorcontrib>Nelson Holte, Molly H.</creatorcontrib><creatorcontrib>Najafova, Zeynab</creatorcontrib><creatorcontrib>Johnsen, Steven A.</creatorcontrib><creatorcontrib>Subramaniam, Malayannan</creatorcontrib><creatorcontrib>Hawse, John R.</creatorcontrib><creatorcontrib>Bensamoun, Sabine F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kammoun, Malek</au><au>Piquereau, Jerome</au><au>Nadal‐Desbarats, Lydie</au><au>Même, Sandra</au><au>Beuvin, Maud</au><au>Bonne, Gisèle</au><au>Veksler, Vladimir</au><au>Le Fur, Yann</au><au>Pouletaut, Philippe</au><au>Même, William</au><au>Szeremeta, Frederic</au><au>Constans, Jean‐Marc</au><au>Bruinsma, Elizabeth S.</au><au>Nelson Holte, Molly H.</au><au>Najafova, Zeynab</au><au>Johnsen, Steven A.</au><au>Subramaniam, Malayannan</au><au>Hawse, John R.</au><au>Bensamoun, Sabine F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2020-03</date><risdate>2020</risdate><volume>228</volume><issue>3</issue><spage>e13394</spage><epage>n/a</epage><pages>e13394-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim
Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.
Methods
We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.
Results
Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1H‐NMR spectra revealed no significant metabolic difference between wild‐type and KO muscles. However, 31P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.
Conclusion
Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31560161</pmid><doi>10.1111/apha.13394</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6019-8683</orcidid><orcidid>https://orcid.org/0000-0002-8869-9594</orcidid><orcidid>https://orcid.org/0000-0003-4290-0173</orcidid><orcidid>https://orcid.org/0000-0003-3406-470X</orcidid><orcidid>https://orcid.org/0000-0002-6751-4378</orcidid><orcidid>https://orcid.org/0000-0001-6355-1713</orcidid><orcidid>https://orcid.org/0000-0001-9700-040X</orcidid><orcidid>https://orcid.org/0000-0003-4403-5566</orcidid><orcidid>https://orcid.org/0000-0001-7570-0851</orcidid><orcidid>https://orcid.org/0000-0002-7938-438X</orcidid><orcidid>https://orcid.org/0000-0003-1772-6740</orcidid><orcidid>https://orcid.org/0000-0003-1198-5805</orcidid><orcidid>https://orcid.org/0000-0002-2516-3258</orcidid><orcidid>https://orcid.org/0000-0002-1714-1382</orcidid><orcidid>https://orcid.org/0000-0002-3765-0889</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-5908-761X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2020-03, Vol.228 (3), p.e13394-n/a |
issn | 1748-1708 1748-1716 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02304067v2 |
source | Access via Wiley Online Library |
subjects | Biochemistry, Molecular Biology Citrate synthase Cytochrome-c oxidase Electron transport chain Enzymatic activity Gene expression Human health and pathology Immunoblotting Intolerance Klf10 Life Sciences Magnetic resonance imaging Metabolism Mitochondria Muscles NMR Nuclear magnetic resonance Oxidative metabolism Phenotypes Phosphocreatine Ribonucleic acid RNA Signal transduction Skeletal muscle Soleus muscle Succinate dehydrogenase Tieg1 Tissues and Organs Transmission electron microscopy Ultrastructure |
title | Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20role%20of%20Tieg1%20in%20muscle%20metabolism%20and%20mitochondrial%20oxidative%20capacities&rft.jtitle=Acta%20Physiologica&rft.au=Kammoun,%20Malek&rft.date=2020-03&rft.volume=228&rft.issue=3&rft.spage=e13394&rft.epage=n/a&rft.pages=e13394-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13394&rft_dat=%3Cproquest_hal_p%3E2358162153%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358162153&rft_id=info:pmid/31560161&rfr_iscdi=true |