Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study

Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-09, Vol.100 (11), p.1, Article 115410
Hauptverfasser: Impellizzeri, A, Briddon, P, Ewels, C P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. B
container_volume 100
creator Impellizzeri, A
Briddon, P
Ewels, C P
description Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.
doi_str_mv 10.1103/PhysRevB.100.115410
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02301164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306798829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</originalsourceid><addsrcrecordid>eNqFkUtP5DAQhKPVIi0CfgEXS3viEOjOwxnvbRYtD2kkEI9z1HE6TFhjz9oOaP49jmbhyqlLpa-rW6osO0Y4RYTy7Ha9DXf8-vsUYXbqCuFbtl9UUuVKSfX9U9fwIzsK4RkAUIJqQO1n8T6S_jvap1yQ7YVej57MGLd5zxu2PdsotDOGNoGFG0RIpOH8jYzhRJPvnBWWrItTx-GXWApD_onzoMmwSOthzhomq-PoLBkR4tRvD7O9gUzgo__zIHu8-PNwfpWvbi6vz5erXFdQx1xhwVr2g0JdK2y4o7JPatExYF2rpkCCatENJcm6rIgqZIkDNzWA7Bm78iA72eWuybQbP76Q37aOxvZquWpnD4oSEGX1ion9uWM33v2bOMT22U0-vRzaBMlGLRaF-ooqEFIJiSp3lPYuBM_D53GEdu6s_egsGbMzd1a-A1w5izA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306210100</pqid></control><display><type>article</type><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><source>American Physical Society Journals</source><creator>Impellizzeri, A ; Briddon, P ; Ewels, C P</creator><creatorcontrib>Impellizzeri, A ; Briddon, P ; Ewels, C P</creatorcontrib><description>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</description><identifier>ISSN: 2469-9950</identifier><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 2469-9969</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.100.115410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Carbon ; Charge transfer ; Chirality ; Collapse ; Condensed Matter ; Density functional theory ; Electron tubes ; Electronic properties ; Electronic structure ; Energy gap ; Lateral stability ; Materials Science ; Physics ; Quantum confinement ; Single wall carbon nanotubes ; Stacking sequence (composite materials)</subject><ispartof>Physical review. B, 2019-09, Vol.100 (11), p.1, Article 115410</ispartof><rights>Copyright American Physical Society Sep 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</citedby><cites>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</cites><orcidid>0000-0001-5530-9601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02301164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Impellizzeri, A</creatorcontrib><creatorcontrib>Briddon, P</creatorcontrib><creatorcontrib>Ewels, C P</creatorcontrib><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><title>Physical review. B</title><description>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</description><subject>Bilayers</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Chirality</subject><subject>Collapse</subject><subject>Condensed Matter</subject><subject>Density functional theory</subject><subject>Electron tubes</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Lateral stability</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Quantum confinement</subject><subject>Single wall carbon nanotubes</subject><subject>Stacking sequence (composite materials)</subject><issn>2469-9950</issn><issn>1098-0121</issn><issn>2469-9969</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP5DAQhKPVIi0CfgEXS3viEOjOwxnvbRYtD2kkEI9z1HE6TFhjz9oOaP49jmbhyqlLpa-rW6osO0Y4RYTy7Ha9DXf8-vsUYXbqCuFbtl9UUuVKSfX9U9fwIzsK4RkAUIJqQO1n8T6S_jvap1yQ7YVej57MGLd5zxu2PdsotDOGNoGFG0RIpOH8jYzhRJPvnBWWrItTx-GXWApD_onzoMmwSOthzhomq-PoLBkR4tRvD7O9gUzgo__zIHu8-PNwfpWvbi6vz5erXFdQx1xhwVr2g0JdK2y4o7JPatExYF2rpkCCatENJcm6rIgqZIkDNzWA7Bm78iA72eWuybQbP76Q37aOxvZquWpnD4oSEGX1ion9uWM33v2bOMT22U0-vRzaBMlGLRaF-ooqEFIJiSp3lPYuBM_D53GEdu6s_egsGbMzd1a-A1w5izA</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Impellizzeri, A</creator><creator>Briddon, P</creator><creator>Ewels, C P</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5530-9601</orcidid></search><sort><creationdate>20190909</creationdate><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><author>Impellizzeri, A ; Briddon, P ; Ewels, C P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bilayers</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Chirality</topic><topic>Collapse</topic><topic>Condensed Matter</topic><topic>Density functional theory</topic><topic>Electron tubes</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Lateral stability</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Quantum confinement</topic><topic>Single wall carbon nanotubes</topic><topic>Stacking sequence (composite materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Impellizzeri, A</creatorcontrib><creatorcontrib>Briddon, P</creatorcontrib><creatorcontrib>Ewels, C P</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Impellizzeri, A</au><au>Briddon, P</au><au>Ewels, C P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</atitle><jtitle>Physical review. B</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>100</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115410</artnum><issn>2469-9950</issn><issn>1098-0121</issn><eissn>2469-9969</eissn><eissn>1550-235X</eissn><abstract>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.115410</doi><orcidid>https://orcid.org/0000-0001-5530-9601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-09, Vol.100 (11), p.1, Article 115410
issn 2469-9950
1098-0121
2469-9969
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02301164v1
source American Physical Society Journals
subjects Bilayers
Carbon
Charge transfer
Chirality
Collapse
Condensed Matter
Density functional theory
Electron tubes
Electronic properties
Electronic structure
Energy gap
Lateral stability
Materials Science
Physics
Quantum confinement
Single wall carbon nanotubes
Stacking sequence (composite materials)
title Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking-%20and%20chirality-dependent%20collapse%20of%20single-walled%20carbon%20nanotubes:%20A%20large-scale%20density-functional%20study&rft.jtitle=Physical%20review.%20B&rft.au=Impellizzeri,%20A&rft.date=2019-09-09&rft.volume=100&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115410&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.115410&rft_dat=%3Cproquest_hal_p%3E2306798829%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306210100&rft_id=info:pmid/&rfr_iscdi=true