Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study
Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-09, Vol.100 (11), p.1, Article 115410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 100 |
creator | Impellizzeri, A Briddon, P Ewels, C P |
description | Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications. |
doi_str_mv | 10.1103/PhysRevB.100.115410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02301164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306798829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</originalsourceid><addsrcrecordid>eNqFkUtP5DAQhKPVIi0CfgEXS3viEOjOwxnvbRYtD2kkEI9z1HE6TFhjz9oOaP49jmbhyqlLpa-rW6osO0Y4RYTy7Ha9DXf8-vsUYXbqCuFbtl9UUuVKSfX9U9fwIzsK4RkAUIJqQO1n8T6S_jvap1yQ7YVej57MGLd5zxu2PdsotDOGNoGFG0RIpOH8jYzhRJPvnBWWrItTx-GXWApD_onzoMmwSOthzhomq-PoLBkR4tRvD7O9gUzgo__zIHu8-PNwfpWvbi6vz5erXFdQx1xhwVr2g0JdK2y4o7JPatExYF2rpkCCatENJcm6rIgqZIkDNzWA7Bm78iA72eWuybQbP76Q37aOxvZquWpnD4oSEGX1ion9uWM33v2bOMT22U0-vRzaBMlGLRaF-ooqEFIJiSp3lPYuBM_D53GEdu6s_egsGbMzd1a-A1w5izA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306210100</pqid></control><display><type>article</type><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><source>American Physical Society Journals</source><creator>Impellizzeri, A ; Briddon, P ; Ewels, C P</creator><creatorcontrib>Impellizzeri, A ; Briddon, P ; Ewels, C P</creatorcontrib><description>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</description><identifier>ISSN: 2469-9950</identifier><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 2469-9969</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.100.115410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bilayers ; Carbon ; Charge transfer ; Chirality ; Collapse ; Condensed Matter ; Density functional theory ; Electron tubes ; Electronic properties ; Electronic structure ; Energy gap ; Lateral stability ; Materials Science ; Physics ; Quantum confinement ; Single wall carbon nanotubes ; Stacking sequence (composite materials)</subject><ispartof>Physical review. B, 2019-09, Vol.100 (11), p.1, Article 115410</ispartof><rights>Copyright American Physical Society Sep 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</citedby><cites>FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</cites><orcidid>0000-0001-5530-9601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02301164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Impellizzeri, A</creatorcontrib><creatorcontrib>Briddon, P</creatorcontrib><creatorcontrib>Ewels, C P</creatorcontrib><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><title>Physical review. B</title><description>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</description><subject>Bilayers</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Chirality</subject><subject>Collapse</subject><subject>Condensed Matter</subject><subject>Density functional theory</subject><subject>Electron tubes</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Lateral stability</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Quantum confinement</subject><subject>Single wall carbon nanotubes</subject><subject>Stacking sequence (composite materials)</subject><issn>2469-9950</issn><issn>1098-0121</issn><issn>2469-9969</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP5DAQhKPVIi0CfgEXS3viEOjOwxnvbRYtD2kkEI9z1HE6TFhjz9oOaP49jmbhyqlLpa-rW6osO0Y4RYTy7Ha9DXf8-vsUYXbqCuFbtl9UUuVKSfX9U9fwIzsK4RkAUIJqQO1n8T6S_jvap1yQ7YVej57MGLd5zxu2PdsotDOGNoGFG0RIpOH8jYzhRJPvnBWWrItTx-GXWApD_onzoMmwSOthzhomq-PoLBkR4tRvD7O9gUzgo__zIHu8-PNwfpWvbi6vz5erXFdQx1xhwVr2g0JdK2y4o7JPatExYF2rpkCCatENJcm6rIgqZIkDNzWA7Bm78iA72eWuybQbP76Q37aOxvZquWpnD4oSEGX1ion9uWM33v2bOMT22U0-vRzaBMlGLRaF-ooqEFIJiSp3lPYuBM_D53GEdu6s_egsGbMzd1a-A1w5izA</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Impellizzeri, A</creator><creator>Briddon, P</creator><creator>Ewels, C P</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5530-9601</orcidid></search><sort><creationdate>20190909</creationdate><title>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</title><author>Impellizzeri, A ; Briddon, P ; Ewels, C P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-912ec6df91c5917eba3dc598be01559721a048bf3a6534aa41e61fe75006de1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bilayers</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Chirality</topic><topic>Collapse</topic><topic>Condensed Matter</topic><topic>Density functional theory</topic><topic>Electron tubes</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Lateral stability</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Quantum confinement</topic><topic>Single wall carbon nanotubes</topic><topic>Stacking sequence (composite materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Impellizzeri, A</creatorcontrib><creatorcontrib>Briddon, P</creatorcontrib><creatorcontrib>Ewels, C P</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Impellizzeri, A</au><au>Briddon, P</au><au>Ewels, C P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study</atitle><jtitle>Physical review. B</jtitle><date>2019-09-09</date><risdate>2019</risdate><volume>100</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115410</artnum><issn>2469-9950</issn><issn>1098-0121</issn><eissn>2469-9969</eissn><eissn>1550-235X</eissn><abstract>Using density functional theory with van der Waals (vdW) corrections, we study the collapse of free-standing single-walled carbon nanotubes (also called "dogbone" nanotubes). Their thermodynamic stability is strongly influenced by the initial stacking sequence, with lateral shear allowing registry change with turbostratic stacking predominant. The electronic structure of collapsed zigzag and armchair carbon nanotubes is investigated, demonstrating sensitivity to the lattice registry. The opening of small (meV) band gaps is shown for both armchair and zigzag collapsed nanotubes, arising from quantum confinement and charge transfer between the bilayer graphenelike central region and nanotubelike edges. Different scaling rules for the band gaps of collapsed carbon nanotubes are obtained as a function of their widths taking stacking and chirality into account. We reconcile a complete understanding of electronic properties in these deformed tubes with literature theoretical and experimental results, suggesting collapsed nanotubes can be promising candidates as conductive nanoribbons in electronic and spintronic device applications.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.115410</doi><orcidid>https://orcid.org/0000-0001-5530-9601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-09, Vol.100 (11), p.1, Article 115410 |
issn | 2469-9950 1098-0121 2469-9969 1550-235X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02301164v1 |
source | American Physical Society Journals |
subjects | Bilayers Carbon Charge transfer Chirality Collapse Condensed Matter Density functional theory Electron tubes Electronic properties Electronic structure Energy gap Lateral stability Materials Science Physics Quantum confinement Single wall carbon nanotubes Stacking sequence (composite materials) |
title | Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking-%20and%20chirality-dependent%20collapse%20of%20single-walled%20carbon%20nanotubes:%20A%20large-scale%20density-functional%20study&rft.jtitle=Physical%20review.%20B&rft.au=Impellizzeri,%20A&rft.date=2019-09-09&rft.volume=100&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115410&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.115410&rft_dat=%3Cproquest_hal_p%3E2306798829%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306210100&rft_id=info:pmid/&rfr_iscdi=true |