Velocities of copper droplets in the De Laval atomization process

Atomization experiments were carried out at the Nanoval atomization unit. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. The experimental set-up designed to access the area closest to the atomization point w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2012-10, Vol.229, p.191-198
Hauptverfasser: Planche, M.P., Khatim, O., Dembinski, L., Coddet, C., Girardot, L., Bailly, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue
container_start_page 191
container_title Powder technology
container_volume 229
creator Planche, M.P.
Khatim, O.
Dembinski, L.
Coddet, C.
Girardot, L.
Bailly, Y.
description Atomization experiments were carried out at the Nanoval atomization unit. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. The experimental set-up designed to access the area closest to the atomization point was described in detail. Velocity vector fields were constructed by taking into account the distance from the nozzle exit. Instantaneous velocities on the atomization axis were calculated as a function of the atomization duration. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. After processing, the droplet sizes were analyzed in relation to the working conditions using a Spraytec analyzer. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. [Display omitted] ► We design a specific optical set-up to provide PIV measures on Cu droplets in the vicinity of the De Laval nozzle. ► We examine changes in the velocity profiles and intensities with the operating parameters. ► Increasing atomization pressure will increase the droplet velocity and decrease the droplet size. ► Increasing the melt nozzle diameter will induce the decrease in droplet velocity and the increase in droplet size.
doi_str_mv 10.1016/j.powtec.2012.06.031
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02300107v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591012004299</els_id><sourcerecordid>1464585760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-d63a7718d456f3f9ece566c5dadb20f7fc17695490839cc4054b82801293e303</originalsourceid><addsrcrecordid>eNp9kEFrFDEUx4MouFa_geBcBD3M-JJMkslFWFrbCgserOItpJkXm2V2Mibpin56s0zp0dOD8Hv_98-PkNcUOgpUfth3S_xd0HUMKOtAdsDpE7Khg-ItZ8OPp2QDwFkrNIXn5EXOewCQnMKGbL_jFF0oAXMTfePismBqxhSXCUtuwtyUO2wusNnZo50aW-Ih_LUlxLlZUnSY80vyzNsp46uHeUZuLj_dnF-3uy9Xn8-3u9b1TJV2lNwqRYexF9Jzr9GhkNKJ0Y63DLzyjiqpRa9h4Nq5HkR_O7Chfkhz5MDPyPs19s5OZknhYNMfE20w19udOb0B4wAU1JFW9t3K1oq_7jEXcwjZ4TTZGeN9NrSXvRiEkqfYfkVdijkn9I_ZFMxJrtmbVa45yTUgTZVb194-XLDZ2cknO7uQH3eZFJJyrSr3ZuW8jcb-TJX59rUGiVpVKq51JT6uBFZ3x4DJZBdwdjiGhK6YMYb_V_kHZ5GYvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464585760</pqid></control><display><type>article</type><title>Velocities of copper droplets in the De Laval atomization process</title><source>Access via ScienceDirect (Elsevier)</source><creator>Planche, M.P. ; Khatim, O. ; Dembinski, L. ; Coddet, C. ; Girardot, L. ; Bailly, Y.</creator><creatorcontrib>Planche, M.P. ; Khatim, O. ; Dembinski, L. ; Coddet, C. ; Girardot, L. ; Bailly, Y.</creatorcontrib><description>Atomization experiments were carried out at the Nanoval atomization unit. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. The experimental set-up designed to access the area closest to the atomization point was described in detail. Velocity vector fields were constructed by taking into account the distance from the nozzle exit. Instantaneous velocities on the atomization axis were calculated as a function of the atomization duration. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. After processing, the droplet sizes were analyzed in relation to the working conditions using a Spraytec analyzer. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. [Display omitted] ► We design a specific optical set-up to provide PIV measures on Cu droplets in the vicinity of the De Laval nozzle. ► We examine changes in the velocity profiles and intensities with the operating parameters. ► Increasing atomization pressure will increase the droplet velocity and decrease the droplet size. ► Increasing the melt nozzle diameter will induce the decrease in droplet velocity and the increase in droplet size.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2012.06.031</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Atomization ; Atomizing ; Automatic ; Chemical engineering ; Close coupled process ; Copper ; Copper atomization ; Droplets ; Electric power ; Engineering Sciences ; Exact sciences and technology ; Fluid mechanics ; MATHEMATICAL ANALYSIS ; Mechanics ; melting ; MICROSTRUCTURES ; Miscellaneous ; Nanostructure ; Nozzles ; Physics ; PIV measures ; Solid-solid systems ; Thermics ; Vectors (mathematics)</subject><ispartof>Powder technology, 2012-10, Vol.229, p.191-198</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-d63a7718d456f3f9ece566c5dadb20f7fc17695490839cc4054b82801293e303</citedby><cites>FETCH-LOGICAL-c427t-d63a7718d456f3f9ece566c5dadb20f7fc17695490839cc4054b82801293e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2012.06.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26561397$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02300107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Planche, M.P.</creatorcontrib><creatorcontrib>Khatim, O.</creatorcontrib><creatorcontrib>Dembinski, L.</creatorcontrib><creatorcontrib>Coddet, C.</creatorcontrib><creatorcontrib>Girardot, L.</creatorcontrib><creatorcontrib>Bailly, Y.</creatorcontrib><title>Velocities of copper droplets in the De Laval atomization process</title><title>Powder technology</title><description>Atomization experiments were carried out at the Nanoval atomization unit. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. The experimental set-up designed to access the area closest to the atomization point was described in detail. Velocity vector fields were constructed by taking into account the distance from the nozzle exit. Instantaneous velocities on the atomization axis were calculated as a function of the atomization duration. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. After processing, the droplet sizes were analyzed in relation to the working conditions using a Spraytec analyzer. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. [Display omitted] ► We design a specific optical set-up to provide PIV measures on Cu droplets in the vicinity of the De Laval nozzle. ► We examine changes in the velocity profiles and intensities with the operating parameters. ► Increasing atomization pressure will increase the droplet velocity and decrease the droplet size. ► Increasing the melt nozzle diameter will induce the decrease in droplet velocity and the increase in droplet size.</description><subject>Applied sciences</subject><subject>Atomization</subject><subject>Atomizing</subject><subject>Automatic</subject><subject>Chemical engineering</subject><subject>Close coupled process</subject><subject>Copper</subject><subject>Copper atomization</subject><subject>Droplets</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mechanics</subject><subject>melting</subject><subject>MICROSTRUCTURES</subject><subject>Miscellaneous</subject><subject>Nanostructure</subject><subject>Nozzles</subject><subject>Physics</subject><subject>PIV measures</subject><subject>Solid-solid systems</subject><subject>Thermics</subject><subject>Vectors (mathematics)</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrFDEUx4MouFa_geBcBD3M-JJMkslFWFrbCgserOItpJkXm2V2Mibpin56s0zp0dOD8Hv_98-PkNcUOgpUfth3S_xd0HUMKOtAdsDpE7Khg-ItZ8OPp2QDwFkrNIXn5EXOewCQnMKGbL_jFF0oAXMTfePismBqxhSXCUtuwtyUO2wusNnZo50aW-Ih_LUlxLlZUnSY80vyzNsp46uHeUZuLj_dnF-3uy9Xn8-3u9b1TJV2lNwqRYexF9Jzr9GhkNKJ0Y63DLzyjiqpRa9h4Nq5HkR_O7Chfkhz5MDPyPs19s5OZknhYNMfE20w19udOb0B4wAU1JFW9t3K1oq_7jEXcwjZ4TTZGeN9NrSXvRiEkqfYfkVdijkn9I_ZFMxJrtmbVa45yTUgTZVb194-XLDZ2cknO7uQH3eZFJJyrSr3ZuW8jcb-TJX59rUGiVpVKq51JT6uBFZ3x4DJZBdwdjiGhK6YMYb_V_kHZ5GYvw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Planche, M.P.</creator><creator>Khatim, O.</creator><creator>Dembinski, L.</creator><creator>Coddet, C.</creator><creator>Girardot, L.</creator><creator>Bailly, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20121001</creationdate><title>Velocities of copper droplets in the De Laval atomization process</title><author>Planche, M.P. ; Khatim, O. ; Dembinski, L. ; Coddet, C. ; Girardot, L. ; Bailly, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-d63a7718d456f3f9ece566c5dadb20f7fc17695490839cc4054b82801293e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Atomization</topic><topic>Atomizing</topic><topic>Automatic</topic><topic>Chemical engineering</topic><topic>Close coupled process</topic><topic>Copper</topic><topic>Copper atomization</topic><topic>Droplets</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mechanics</topic><topic>melting</topic><topic>MICROSTRUCTURES</topic><topic>Miscellaneous</topic><topic>Nanostructure</topic><topic>Nozzles</topic><topic>Physics</topic><topic>PIV measures</topic><topic>Solid-solid systems</topic><topic>Thermics</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Planche, M.P.</creatorcontrib><creatorcontrib>Khatim, O.</creatorcontrib><creatorcontrib>Dembinski, L.</creatorcontrib><creatorcontrib>Coddet, C.</creatorcontrib><creatorcontrib>Girardot, L.</creatorcontrib><creatorcontrib>Bailly, Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Planche, M.P.</au><au>Khatim, O.</au><au>Dembinski, L.</au><au>Coddet, C.</au><au>Girardot, L.</au><au>Bailly, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocities of copper droplets in the De Laval atomization process</atitle><jtitle>Powder technology</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>229</volume><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>Atomization experiments were carried out at the Nanoval atomization unit. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. The experimental set-up designed to access the area closest to the atomization point was described in detail. Velocity vector fields were constructed by taking into account the distance from the nozzle exit. Instantaneous velocities on the atomization axis were calculated as a function of the atomization duration. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. After processing, the droplet sizes were analyzed in relation to the working conditions using a Spraytec analyzer. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. Particle image velocimetry (PIV) was used to determine the velocity vector fields of copper powder production via De Laval gas atomization. Results from this study indicate a strong influence of the atomization pressures and the melt nozzle diameters on velocity characteristics. A close relationship between velocity values and droplet sizes, depending on the operating parameters, was demonstrated. [Display omitted] ► We design a specific optical set-up to provide PIV measures on Cu droplets in the vicinity of the De Laval nozzle. ► We examine changes in the velocity profiles and intensities with the operating parameters. ► Increasing atomization pressure will increase the droplet velocity and decrease the droplet size. ► Increasing the melt nozzle diameter will induce the decrease in droplet velocity and the increase in droplet size.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2012.06.031</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2012-10, Vol.229, p.191-198
issn 0032-5910
1873-328X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02300107v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Atomization
Atomizing
Automatic
Chemical engineering
Close coupled process
Copper
Copper atomization
Droplets
Electric power
Engineering Sciences
Exact sciences and technology
Fluid mechanics
MATHEMATICAL ANALYSIS
Mechanics
melting
MICROSTRUCTURES
Miscellaneous
Nanostructure
Nozzles
Physics
PIV measures
Solid-solid systems
Thermics
Vectors (mathematics)
title Velocities of copper droplets in the De Laval atomization process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocities%20of%20copper%20droplets%20in%20the%20De%20Laval%20atomization%20process&rft.jtitle=Powder%20technology&rft.au=Planche,%20M.P.&rft.date=2012-10-01&rft.volume=229&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2012.06.031&rft_dat=%3Cproquest_hal_p%3E1464585760%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464585760&rft_id=info:pmid/&rft_els_id=S0032591012004299&rfr_iscdi=true