Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis

Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2018, Vol.20 (4), p.1105-1121
Hauptverfasser: Girardin, Valerie, Lequesne, Justine, Ricordeau, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1121
container_issue 4
container_start_page 1105
container_title Methodology and computing in applied probability
container_volume 20
creator Girardin, Valerie
Lequesne, Justine
Ricordeau, Anne
description Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.
doi_str_mv 10.1007/s11009-017-9597-9
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02299589v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02299589v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02299589v13</originalsourceid><addsrcrecordid>eNqVi82KwjAUhYMo-DcP4C5bF3FyG0OaZdURhQ646L5cxrSTIW0kKYI-vR3xBdyc7_BxDiEL4CvgXH1G6KEZB8W01H0MyASkEkwpEMO-i1Qxma5hTKYx_nGegBTrCSmObeVDg531LdtgNGd6woCN6YK9Py31Fc19zXLbGgz025-Ni7Q_0S12pvbB_qCjO-yQZi26W7RxTkYVumg-XpyR5f6r2B7YL7ryEmyD4VZ6tOUhy8t_x5NEa5nqK4h3tg-gLkq2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</creator><creatorcontrib>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</creatorcontrib><description>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-017-9597-9</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Mathematics ; Statistics</subject><ispartof>Methodology and computing in applied probability, 2018, Vol.20 (4), p.1105-1121</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9934-3561 ; 0000-0001-9934-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02299589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Lequesne, Justine</creatorcontrib><creatorcontrib>Ricordeau, Anne</creatorcontrib><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><title>Methodology and computing in applied probability</title><description>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</description><subject>Mathematics</subject><subject>Statistics</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVi82KwjAUhYMo-DcP4C5bF3FyG0OaZdURhQ646L5cxrSTIW0kKYI-vR3xBdyc7_BxDiEL4CvgXH1G6KEZB8W01H0MyASkEkwpEMO-i1Qxma5hTKYx_nGegBTrCSmObeVDg531LdtgNGd6woCN6YK9Py31Fc19zXLbGgz025-Ni7Q_0S12pvbB_qCjO-yQZi26W7RxTkYVumg-XpyR5f6r2B7YL7ryEmyD4VZ6tOUhy8t_x5NEa5nqK4h3tg-gLkq2</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Girardin, Valerie</creator><creator>Lequesne, Justine</creator><creator>Ricordeau, Anne</creator><general>Springer Verlag</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid></search><sort><creationdate>2018</creationdate><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><author>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02299589v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Lequesne, Justine</creatorcontrib><creatorcontrib>Ricordeau, Anne</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girardin, Valerie</au><au>Lequesne, Justine</au><au>Ricordeau, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</atitle><jtitle>Methodology and computing in applied probability</jtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1105</spage><epage>1121</epage><pages>1105-1121</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</abstract><pub>Springer Verlag</pub><doi>10.1007/s11009-017-9597-9</doi><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2018, Vol.20 (4), p.1105-1121
issn 1387-5841
1573-7713
language eng
recordid cdi_hal_primary_oai_HAL_hal_02299589v1
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Mathematics
Statistics
title Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Based%20Parametrization%20of%20Log-Linear%20Models%20for%20Categorical%20Data%20Analysis&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Girardin,%20Valerie&rft.date=2018&rft.volume=20&rft.issue=4&rft.spage=1105&rft.epage=1121&rft.pages=1105-1121&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-017-9597-9&rft_dat=%3Chal%3Eoai_HAL_hal_02299589v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true