Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis
Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of informati...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2018, Vol.20 (4), p.1105-1121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1121 |
---|---|
container_issue | 4 |
container_start_page | 1105 |
container_title | Methodology and computing in applied probability |
container_volume | 20 |
creator | Girardin, Valerie Lequesne, Justine Ricordeau, Anne |
description | Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods. |
doi_str_mv | 10.1007/s11009-017-9597-9 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02299589v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02299589v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02299589v13</originalsourceid><addsrcrecordid>eNqVi82KwjAUhYMo-DcP4C5bF3FyG0OaZdURhQ646L5cxrSTIW0kKYI-vR3xBdyc7_BxDiEL4CvgXH1G6KEZB8W01H0MyASkEkwpEMO-i1Qxma5hTKYx_nGegBTrCSmObeVDg531LdtgNGd6woCN6YK9Py31Fc19zXLbGgz025-Ni7Q_0S12pvbB_qCjO-yQZi26W7RxTkYVumg-XpyR5f6r2B7YL7ryEmyD4VZ6tOUhy8t_x5NEa5nqK4h3tg-gLkq2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</creator><creatorcontrib>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</creatorcontrib><description>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-017-9597-9</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Mathematics ; Statistics</subject><ispartof>Methodology and computing in applied probability, 2018, Vol.20 (4), p.1105-1121</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9934-3561 ; 0000-0001-9934-3561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02299589$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Lequesne, Justine</creatorcontrib><creatorcontrib>Ricordeau, Anne</creatorcontrib><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><title>Methodology and computing in applied probability</title><description>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</description><subject>Mathematics</subject><subject>Statistics</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVi82KwjAUhYMo-DcP4C5bF3FyG0OaZdURhQ646L5cxrSTIW0kKYI-vR3xBdyc7_BxDiEL4CvgXH1G6KEZB8W01H0MyASkEkwpEMO-i1Qxma5hTKYx_nGegBTrCSmObeVDg531LdtgNGd6woCN6YK9Py31Fc19zXLbGgz025-Ni7Q_0S12pvbB_qCjO-yQZi26W7RxTkYVumg-XpyR5f6r2B7YL7ryEmyD4VZ6tOUhy8t_x5NEa5nqK4h3tg-gLkq2</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Girardin, Valerie</creator><creator>Lequesne, Justine</creator><creator>Ricordeau, Anne</creator><general>Springer Verlag</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid></search><sort><creationdate>2018</creationdate><title>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</title><author>Girardin, Valerie ; Lequesne, Justine ; Ricordeau, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02299589v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girardin, Valerie</creatorcontrib><creatorcontrib>Lequesne, Justine</creatorcontrib><creatorcontrib>Ricordeau, Anne</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girardin, Valerie</au><au>Lequesne, Justine</au><au>Ricordeau, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis</atitle><jtitle>Methodology and computing in applied probability</jtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1105</spage><epage>1121</epage><pages>1105-1121</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>Zighera (App Stoch Mod Data Anal 1:93–108 1985) introduced a new parameterization of log-linear models for analyzing categorical data, directly linked to a thorough analysis of discrimination information through Kullback-Leibler divergence. The method mainly aims at quantifying in terms of information the variations of a binary variable of interest, by comparing two contingency tables – or sub-tables – through effects of explanatory categorical variables. The present paper settles the mathematical background necessary to rigorously apply Zighera’s parameterization to any categorical data. In particular, identifiability and good properties of asymptotically χ 2-distributed test statistics are proven to hold. Determination of parameters and all tests of effects due to explanatory variables are simultaneous. Application to classical data sets illustrates contribution with respect to existing methods.</abstract><pub>Springer Verlag</pub><doi>10.1007/s11009-017-9597-9</doi><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid><orcidid>https://orcid.org/0000-0001-9934-3561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2018, Vol.20 (4), p.1105-1121 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02299589v1 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Mathematics Statistics |
title | Information-Based Parametrization of Log-Linear Models for Categorical Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Based%20Parametrization%20of%20Log-Linear%20Models%20for%20Categorical%20Data%20Analysis&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Girardin,%20Valerie&rft.date=2018&rft.volume=20&rft.issue=4&rft.spage=1105&rft.epage=1121&rft.pages=1105-1121&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-017-9597-9&rft_dat=%3Chal%3Eoai_HAL_hal_02299589v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |