Robust stabilization for uncertain time-delay systems containing saturating actuators

A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1996-05, Vol.41 (5), p.742-747
Hauptverfasser: Niculescu, S.-I., Dion, J.-M., Dugard, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 5
container_start_page 742
container_title IEEE transactions on automatic control
container_volume 41
creator Niculescu, S.-I.
Dion, J.-M.
Dugard, L.
description A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.
doi_str_mv 10.1109/9.489216
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02299217v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>489216</ieee_id><sourcerecordid>29016153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOKfg2VMPInroTNKmS44y1AkDQdw5ZGmikbaZeakw_3pTOnY1h_eSvM_78n4gdEnwjBAs7sWs5IKS6ghNCGM8p4wWx2iCMeG5oLw6RWcAX-lZlSWZoPWb3_QQM4hq4xr3q6LzXWZ9yPpOmxCV67LoWpPXplG7DHYQTQuZ9t0Qct1HBir2IaWlq9KxV9EHOEcnVjVgLvZ-itZPj--LZb56fX5ZPKxyXVQi5rWtqbYE10yUOjlaWV7wkiUrGBNiqDcdWmlTFMJiofBckA0vDdGc16yYortR91M1chtcq8JOeuXk8mElhz9MaVIh8x-S2JuR3Qb_3RuIsnWgTdOozvgeJBVpJoQV_4OcMYJLnsDbEdTBAwRjDyUQLIdlSCHHZST0eq-pQKvGBtVpBwe-wKnv-dDP1Yg5Y8whutf4A9UDkFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28551048</pqid></control><display><type>article</type><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</creator><creatorcontrib>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</creatorcontrib><description>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.489216</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Automatic ; Computer science; control theory; systems ; Control theory. Systems ; Delay effects ; Differential equations ; Engineering Sciences ; Exact sciences and technology ; Riccati equations ; Robust control ; Robust stability ; Robustness ; System theory ; Time varying systems ; Uncertain systems ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1996-05, Vol.41 (5), p.742-747</ispartof><rights>1996 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</citedby><cites>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</cites><orcidid>0000-0002-3444-2566 ; 0000-0002-1596-5994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/489216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/489216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3083875$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02299217$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Niculescu, S.-I.</creatorcontrib><creatorcontrib>Dion, J.-M.</creatorcontrib><creatorcontrib>Dugard, L.</creatorcontrib><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Delay effects</subject><subject>Differential equations</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Riccati equations</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>System theory</subject><subject>Time varying systems</subject><subject>Uncertain systems</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LwzAUx4MoOKfg2VMPInroTNKmS44y1AkDQdw5ZGmikbaZeakw_3pTOnY1h_eSvM_78n4gdEnwjBAs7sWs5IKS6ghNCGM8p4wWx2iCMeG5oLw6RWcAX-lZlSWZoPWb3_QQM4hq4xr3q6LzXWZ9yPpOmxCV67LoWpPXplG7DHYQTQuZ9t0Qct1HBir2IaWlq9KxV9EHOEcnVjVgLvZ-itZPj--LZb56fX5ZPKxyXVQi5rWtqbYE10yUOjlaWV7wkiUrGBNiqDcdWmlTFMJiofBckA0vDdGc16yYortR91M1chtcq8JOeuXk8mElhz9MaVIh8x-S2JuR3Qb_3RuIsnWgTdOozvgeJBVpJoQV_4OcMYJLnsDbEdTBAwRjDyUQLIdlSCHHZST0eq-pQKvGBtVpBwe-wKnv-dDP1Yg5Y8whutf4A9UDkFM</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Niculescu, S.-I.</creator><creator>Dion, J.-M.</creator><creator>Dugard, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid><orcidid>https://orcid.org/0000-0002-1596-5994</orcidid></search><sort><creationdate>19960501</creationdate><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><author>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Delay effects</topic><topic>Differential equations</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Riccati equations</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>System theory</topic><topic>Time varying systems</topic><topic>Uncertain systems</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niculescu, S.-I.</creatorcontrib><creatorcontrib>Dion, J.-M.</creatorcontrib><creatorcontrib>Dugard, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niculescu, S.-I.</au><au>Dion, J.-M.</au><au>Dugard, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stabilization for uncertain time-delay systems containing saturating actuators</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>41</volume><issue>5</issue><spage>742</spage><epage>747</epage><pages>742-747</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.489216</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid><orcidid>https://orcid.org/0000-0002-1596-5994</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1996-05, Vol.41 (5), p.742-747
issn 0018-9286
1558-2523
language eng
recordid cdi_hal_primary_oai_HAL_hal_02299217v1
source IEEE Electronic Library (IEL)
subjects Actuators
Applied sciences
Automatic
Computer science
control theory
systems
Control theory. Systems
Delay effects
Differential equations
Engineering Sciences
Exact sciences and technology
Riccati equations
Robust control
Robust stability
Robustness
System theory
Time varying systems
Uncertain systems
Upper bound
title Robust stabilization for uncertain time-delay systems containing saturating actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stabilization%20for%20uncertain%20time-delay%20systems%20containing%20saturating%20actuators&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Niculescu,%20S.-I.&rft.date=1996-05-01&rft.volume=41&rft.issue=5&rft.spage=742&rft.epage=747&rft.pages=742-747&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.489216&rft_dat=%3Cproquest_RIE%3E29016153%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28551048&rft_id=info:pmid/&rft_ieee_id=489216&rfr_iscdi=true