Robust stabilization for uncertain time-delay systems containing saturating actuators
A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1996-05, Vol.41 (5), p.742-747 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 5 |
container_start_page | 742 |
container_title | IEEE transactions on automatic control |
container_volume | 41 |
creator | Niculescu, S.-I. Dion, J.-M. Dugard, L. |
description | A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations. |
doi_str_mv | 10.1109/9.489216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02299217v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>489216</ieee_id><sourcerecordid>29016153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOKfg2VMPInroTNKmS44y1AkDQdw5ZGmikbaZeakw_3pTOnY1h_eSvM_78n4gdEnwjBAs7sWs5IKS6ghNCGM8p4wWx2iCMeG5oLw6RWcAX-lZlSWZoPWb3_QQM4hq4xr3q6LzXWZ9yPpOmxCV67LoWpPXplG7DHYQTQuZ9t0Qct1HBir2IaWlq9KxV9EHOEcnVjVgLvZ-itZPj--LZb56fX5ZPKxyXVQi5rWtqbYE10yUOjlaWV7wkiUrGBNiqDcdWmlTFMJiofBckA0vDdGc16yYortR91M1chtcq8JOeuXk8mElhz9MaVIh8x-S2JuR3Qb_3RuIsnWgTdOozvgeJBVpJoQV_4OcMYJLnsDbEdTBAwRjDyUQLIdlSCHHZST0eq-pQKvGBtVpBwe-wKnv-dDP1Yg5Y8whutf4A9UDkFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28551048</pqid></control><display><type>article</type><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</creator><creatorcontrib>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</creatorcontrib><description>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.489216</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Applied sciences ; Automatic ; Computer science; control theory; systems ; Control theory. Systems ; Delay effects ; Differential equations ; Engineering Sciences ; Exact sciences and technology ; Riccati equations ; Robust control ; Robust stability ; Robustness ; System theory ; Time varying systems ; Uncertain systems ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1996-05, Vol.41 (5), p.742-747</ispartof><rights>1996 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</citedby><cites>FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</cites><orcidid>0000-0002-3444-2566 ; 0000-0002-1596-5994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/489216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/489216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3083875$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02299217$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Niculescu, S.-I.</creatorcontrib><creatorcontrib>Dion, J.-M.</creatorcontrib><creatorcontrib>Dugard, L.</creatorcontrib><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</description><subject>Actuators</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Delay effects</subject><subject>Differential equations</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Riccati equations</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>System theory</subject><subject>Time varying systems</subject><subject>Uncertain systems</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LwzAUx4MoOKfg2VMPInroTNKmS44y1AkDQdw5ZGmikbaZeakw_3pTOnY1h_eSvM_78n4gdEnwjBAs7sWs5IKS6ghNCGM8p4wWx2iCMeG5oLw6RWcAX-lZlSWZoPWb3_QQM4hq4xr3q6LzXWZ9yPpOmxCV67LoWpPXplG7DHYQTQuZ9t0Qct1HBir2IaWlq9KxV9EHOEcnVjVgLvZ-itZPj--LZb56fX5ZPKxyXVQi5rWtqbYE10yUOjlaWV7wkiUrGBNiqDcdWmlTFMJiofBckA0vDdGc16yYortR91M1chtcq8JOeuXk8mElhz9MaVIh8x-S2JuR3Qb_3RuIsnWgTdOozvgeJBVpJoQV_4OcMYJLnsDbEdTBAwRjDyUQLIdlSCHHZST0eq-pQKvGBtVpBwe-wKnv-dDP1Yg5Y8whutf4A9UDkFM</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Niculescu, S.-I.</creator><creator>Dion, J.-M.</creator><creator>Dugard, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid><orcidid>https://orcid.org/0000-0002-1596-5994</orcidid></search><sort><creationdate>19960501</creationdate><title>Robust stabilization for uncertain time-delay systems containing saturating actuators</title><author>Niculescu, S.-I. ; Dion, J.-M. ; Dugard, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-dfd2cf10d594c10d26f83845f8395599928666626ce339f09a0791b84e1c88d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Actuators</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Delay effects</topic><topic>Differential equations</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Riccati equations</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>System theory</topic><topic>Time varying systems</topic><topic>Uncertain systems</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niculescu, S.-I.</creatorcontrib><creatorcontrib>Dion, J.-M.</creatorcontrib><creatorcontrib>Dugard, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niculescu, S.-I.</au><au>Dion, J.-M.</au><au>Dugard, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust stabilization for uncertain time-delay systems containing saturating actuators</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>41</volume><issue>5</issue><spage>742</spage><epage>747</epage><pages>742-747</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A class of uncertain time-delay systems containing a saturating actuator is considered. These systems are characterized by delayed state equations (including a saturating actuator) with norm-bounded parameter uncertainty (possibly time varying) in the state and input matrices. The delay is assumed to be constant bounded but unknown. Using a Razumikhin approach for the stability of functional differential equations, upper bounds on the time delay are given such that the considered uncertain system is robustly stabilizable, in the case of constrained input, via memoryless state feedback control laws. These bounds are given in terms of solutions of appropriate finite dimensional Riccati equations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.489216</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid><orcidid>https://orcid.org/0000-0002-1596-5994</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1996-05, Vol.41 (5), p.742-747 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02299217v1 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Applied sciences Automatic Computer science control theory systems Control theory. Systems Delay effects Differential equations Engineering Sciences Exact sciences and technology Riccati equations Robust control Robust stability Robustness System theory Time varying systems Uncertain systems Upper bound |
title | Robust stabilization for uncertain time-delay systems containing saturating actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20stabilization%20for%20uncertain%20time-delay%20systems%20containing%20saturating%20actuators&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Niculescu,%20S.-I.&rft.date=1996-05-01&rft.volume=41&rft.issue=5&rft.spage=742&rft.epage=747&rft.pages=742-747&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.489216&rft_dat=%3Cproquest_RIE%3E29016153%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28551048&rft_id=info:pmid/&rft_ieee_id=489216&rfr_iscdi=true |