Electron paramagnetic resonance tagged high-resolution excitation spectroscopy of NV-centers in 4H-SiC

We show that electron paramagnetic resonance (EPR) tagged high resolution photoexcitation spectroscopy is a powerful method for the correlation of zero phonon photoluminescence spectra with atomic point defects. Applied to the case of NV centers in 4 H -SiC it allows to associate the photoluminescen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-12, Vol.98 (21), p.1
Hauptverfasser: Zargaleh, S A, von Bardeleben, H J, Cantin, J L, Gerstmann, U, Hameau, S, Eblé, B, Gao, Weibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that electron paramagnetic resonance (EPR) tagged high resolution photoexcitation spectroscopy is a powerful method for the correlation of zero phonon photoluminescence spectra with atomic point defects. Applied to the case of NV centers in 4 H -SiC it allows to associate the photoluminescence zero phonon lines (ZPL) at 1243, 1223, 1180, and 1176 nm with the (hk, kk, hh, kh) configurations of the NV − centers in this material. These results lead to a revision of a previous tentative assignment. Contrary to theoretical predictions, we find that the NV centers in 4 H -SiC show a negligible Franck-Condon shift as their ZPL absorption lines are resonant with the ZPL emission lines. The high subnanometer energy resolution of this technique allows us further to resolve additional fine-structure of the ZPL lines of the axial NV centers which show a doublet structure with a splitting of 0.8 nm. Our results confirm that NV centers in 4 H -SiC provide strong competitors for sensing and qubit application due to the shift of their optical transitions into the technology compatible near-infrared region and the superior material properties of SiC. Given that single center spin readout will be realized, they are suitable for scalable nanophotonic devices compatible with optical communication network.
ISSN:2469-9950
1098-0121
2469-9969
1550-235X
DOI:10.1103/PhysRevB.98.214113