Modeling and solving the bi-objective minimum diameter-cost spanning tree problem

The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2014-10, Vol.60 (2), p.195-216
Hauptverfasser: Santos, Andréa Cynthia, Lima, Diego Rocha, Aloise, Dario José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 2
container_start_page 195
container_title Journal of global optimization
container_volume 60
creator Santos, Andréa Cynthia
Lima, Diego Rocha
Aloise, Dario José
description The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets.
doi_str_mv 10.1007/s10898-013-0124-4
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02291641v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02291641v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f66870f8b8ec3f006d942f33a393ec863d53859361c96a9b1fdd33d650c11dca3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C1XD9HJZpMmx1LUChUR9ByySbZN2d2UZFvw7d11xaOHYYbh_wbmQ-iWwj0FWDxkClJJApQNVZSkPEMzyheMFIqKczQDVXDCAeglusp5DwBK8mKG3l-j803otth0DufYnMa533lcBRKrvbd9OHnchi60xxa7YFrf-0RszD3OB9N1P_nkPT6kWDW-vUYXtWmyv_ntc_T59PixWpPN2_PLarkhlnHek1oIuYBaVtJbVgMIp8qiZswwxbyVgjnOJFdMUKuEURWtnWPMCQ6WUmcNm6O76e7ONPqQQmvSl44m6PVyo8cdFOPvJT3RIUunrE0x5-TrP4CCHv3pyZ8e_OnRny4HppiYPGS7rU96H4-pG176B_oGRelytQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and solving the bi-objective minimum diameter-cost spanning tree problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Santos, Andréa Cynthia ; Lima, Diego Rocha ; Aloise, Dario José</creator><creatorcontrib>Santos, Andréa Cynthia ; Lima, Diego Rocha ; Aloise, Dario José</creatorcontrib><description>The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-013-0124-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computer Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Real Functions</subject><ispartof>Journal of global optimization, 2014-10, Vol.60 (2), p.195-216</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f66870f8b8ec3f006d942f33a393ec863d53859361c96a9b1fdd33d650c11dca3</citedby><cites>FETCH-LOGICAL-c355t-f66870f8b8ec3f006d942f33a393ec863d53859361c96a9b1fdd33d650c11dca3</cites><orcidid>0000-0003-2497-4072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-013-0124-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-013-0124-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-02291641$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Andréa Cynthia</creatorcontrib><creatorcontrib>Lima, Diego Rocha</creatorcontrib><creatorcontrib>Aloise, Dario José</creatorcontrib><title>Modeling and solving the bi-objective minimum diameter-cost spanning tree problem</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets.</description><subject>Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C1XD9HJZpMmx1LUChUR9ByySbZN2d2UZFvw7d11xaOHYYbh_wbmQ-iWwj0FWDxkClJJApQNVZSkPEMzyheMFIqKczQDVXDCAeglusp5DwBK8mKG3l-j803otth0DufYnMa533lcBRKrvbd9OHnchi60xxa7YFrf-0RszD3OB9N1P_nkPT6kWDW-vUYXtWmyv_ntc_T59PixWpPN2_PLarkhlnHek1oIuYBaVtJbVgMIp8qiZswwxbyVgjnOJFdMUKuEURWtnWPMCQ6WUmcNm6O76e7ONPqQQmvSl44m6PVyo8cdFOPvJT3RIUunrE0x5-TrP4CCHv3pyZ8e_OnRny4HppiYPGS7rU96H4-pG176B_oGRelytQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Santos, Andréa Cynthia</creator><creator>Lima, Diego Rocha</creator><creator>Aloise, Dario José</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2497-4072</orcidid></search><sort><creationdate>20141001</creationdate><title>Modeling and solving the bi-objective minimum diameter-cost spanning tree problem</title><author>Santos, Andréa Cynthia ; Lima, Diego Rocha ; Aloise, Dario José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f66870f8b8ec3f006d942f33a393ec863d53859361c96a9b1fdd33d650c11dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Andréa Cynthia</creatorcontrib><creatorcontrib>Lima, Diego Rocha</creatorcontrib><creatorcontrib>Aloise, Dario José</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Andréa Cynthia</au><au>Lima, Diego Rocha</au><au>Aloise, Dario José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and solving the bi-objective minimum diameter-cost spanning tree problem</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>60</volume><issue>2</issue><spage>195</spage><epage>216</epage><pages>195-216</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The bi-objective minimum diameter-cost spanning tree problem (bi-MDCST) seeks spanning trees with minimum total cost and minimum diameter. The bi-objective version generalizes the well-known bounded diameter minimum spanning tree problem. The bi-MDCST is a NP-hard problem and models several practical applications in transportation and network design. We propose a bi-objective multiflow formulation for the problem and effective multi-objective metaheuristics: a multi-objective evolutionary algorithm and a fast nondominated sorting genetic algorithm. Some guidelines on how to optimize the problem whenever a priority order can be established between the two objectives are provided. In addition, we present bi-MDCST polynomial cases and theoretical bounds on the search space. Results are reported for four representative test sets.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-013-0124-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2497-4072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2014-10, Vol.60 (2), p.195-216
issn 0925-5001
1573-2916
language eng
recordid cdi_hal_primary_oai_HAL_hal_02291641v1
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Real Functions
title Modeling and solving the bi-objective minimum diameter-cost spanning tree problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20solving%20the%20bi-objective%20minimum%20diameter-cost%20spanning%20tree%20problem&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Santos,%20Andr%C3%A9a%20Cynthia&rft.date=2014-10-01&rft.volume=60&rft.issue=2&rft.spage=195&rft.epage=216&rft.pages=195-216&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-013-0124-4&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02291641v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true