Critical weather situations for renewable energies – Part B: Low stratus risk for solar power

Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2017-02, Vol.101, p.794-803
Hauptverfasser: Köhler, Carmen, Steiner, Andrea, Saint-Drenan, Yves-Marie, Ernst, Dominique, Bergmann-Dick, Anja, Zirkelbach, Mathias, Ben Bouallègue, Zied, Metzinger, Isabel, Ritter, Bodo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 803
container_issue
container_start_page 794
container_title Renewable energy
container_volume 101
creator Köhler, Carmen
Steiner, Andrea
Saint-Drenan, Yves-Marie
Ernst, Dominique
Bergmann-Dick, Anja
Zirkelbach, Mathias
Ben Bouallègue, Zied
Metzinger, Isabel
Ritter, Bodo
description Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahead forecast errors of Germany-wide PV power frequently lie within the magnitude of the balance energy and thus pose a challenge for maintaining grid stability. An indication in advance about the possible occurrence of a critical weather situation such as LS would represent a helpful tool for transmission system operators (TSOs) in their day-to-day business. In the following, a detection algorithm for low stratus risk (LSR) is developed and applied as post-processing to the NWP model forecasts of the regional non-hydrostatic model COSMO-DE, operational at the German Weather Service. The aim of the LSR product is to supply day-ahead warnings and to support the decision making process of the TSOs. The quality of the LSR is assessed by comparing the computed regions of LSR occurrence with a satellite based cloud classification product from the Nowcasting Satellite Facility (NWCSAF). The results show that the LSR provides additional information that should in particular be useful for risk adverse users. •Evaluation of day-ahead solar power forecasts for Germany.•Large solar power errors are linked to low stratus clouds.•Low stratus risk algorithm developed and verified to indicate forecast uncertainties.
doi_str_mv 10.1016/j.renene.2016.09.002
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02287065v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148116307844</els_id><sourcerecordid>oai_HAL_hal_02287065v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7e0b221ab133b41c4061e905216a621c8bb7c29d6feee0d5bd84a3b037a2e9973</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxbeskgYO_8skEoFFCkSLGBt2c6EuoS6sl0idtyBG3ISEopYolnMj9570nyEnDKIGbD8fBU7XA8V82GLoYoB-B6ZsLKoIshLvk8mUOUQsbRkh-TI-xUAy8oinRAxdyYYLTvaowxLdNSbsJXB2LWnrXV0TO6l6pAOg3s26OnXxyd9kC7Qqwta25764GTYeuqMf_nxeNtJRze2R3dMDlrZeTz57VPydHP9OF9E9f3t3XxWRzrlRYgKBMU5k4oliUqZTiFnWEHGWS5zznSpVKF51eQtIkKTqaZMZaIgKSTHqiqSKTnb5S5lJzbOvEr3Lqw0YjGrxXgDzssC8uyNDdp0p9XOeu-w_TMwECNQsRI7oGIEKqASA9DBdrmz4fDHm0EnvDa41tgYhzqIxpr_A74BRKaBpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical weather situations for renewable energies – Part B: Low stratus risk for solar power</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Köhler, Carmen ; Steiner, Andrea ; Saint-Drenan, Yves-Marie ; Ernst, Dominique ; Bergmann-Dick, Anja ; Zirkelbach, Mathias ; Ben Bouallègue, Zied ; Metzinger, Isabel ; Ritter, Bodo</creator><creatorcontrib>Köhler, Carmen ; Steiner, Andrea ; Saint-Drenan, Yves-Marie ; Ernst, Dominique ; Bergmann-Dick, Anja ; Zirkelbach, Mathias ; Ben Bouallègue, Zied ; Metzinger, Isabel ; Ritter, Bodo</creatorcontrib><description>Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahead forecast errors of Germany-wide PV power frequently lie within the magnitude of the balance energy and thus pose a challenge for maintaining grid stability. An indication in advance about the possible occurrence of a critical weather situation such as LS would represent a helpful tool for transmission system operators (TSOs) in their day-to-day business. In the following, a detection algorithm for low stratus risk (LSR) is developed and applied as post-processing to the NWP model forecasts of the regional non-hydrostatic model COSMO-DE, operational at the German Weather Service. The aim of the LSR product is to supply day-ahead warnings and to support the decision making process of the TSOs. The quality of the LSR is assessed by comparing the computed regions of LSR occurrence with a satellite based cloud classification product from the Nowcasting Satellite Facility (NWCSAF). The results show that the LSR provides additional information that should in particular be useful for risk adverse users. •Evaluation of day-ahead solar power forecasts for Germany.•Large solar power errors are linked to low stratus clouds.•Low stratus risk algorithm developed and verified to indicate forecast uncertainties.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2016.09.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Environmental Engineering ; Environmental Sciences ; Fog ; Low stratus ; Numerical weather prediction ; Ocean, Atmosphere ; Photovoltaic ; Physics ; Power forecast ; Sciences of the Universe ; Solar radiation</subject><ispartof>Renewable energy, 2017-02, Vol.101, p.794-803</ispartof><rights>2016 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7e0b221ab133b41c4061e905216a621c8bb7c29d6feee0d5bd84a3b037a2e9973</citedby><cites>FETCH-LOGICAL-c427t-7e0b221ab133b41c4061e905216a621c8bb7c29d6feee0d5bd84a3b037a2e9973</cites><orcidid>0000-0003-1471-1092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2016.09.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02287065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Köhler, Carmen</creatorcontrib><creatorcontrib>Steiner, Andrea</creatorcontrib><creatorcontrib>Saint-Drenan, Yves-Marie</creatorcontrib><creatorcontrib>Ernst, Dominique</creatorcontrib><creatorcontrib>Bergmann-Dick, Anja</creatorcontrib><creatorcontrib>Zirkelbach, Mathias</creatorcontrib><creatorcontrib>Ben Bouallègue, Zied</creatorcontrib><creatorcontrib>Metzinger, Isabel</creatorcontrib><creatorcontrib>Ritter, Bodo</creatorcontrib><title>Critical weather situations for renewable energies – Part B: Low stratus risk for solar power</title><title>Renewable energy</title><description>Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahead forecast errors of Germany-wide PV power frequently lie within the magnitude of the balance energy and thus pose a challenge for maintaining grid stability. An indication in advance about the possible occurrence of a critical weather situation such as LS would represent a helpful tool for transmission system operators (TSOs) in their day-to-day business. In the following, a detection algorithm for low stratus risk (LSR) is developed and applied as post-processing to the NWP model forecasts of the regional non-hydrostatic model COSMO-DE, operational at the German Weather Service. The aim of the LSR product is to supply day-ahead warnings and to support the decision making process of the TSOs. The quality of the LSR is assessed by comparing the computed regions of LSR occurrence with a satellite based cloud classification product from the Nowcasting Satellite Facility (NWCSAF). The results show that the LSR provides additional information that should in particular be useful for risk adverse users. •Evaluation of day-ahead solar power forecasts for Germany.•Large solar power errors are linked to low stratus clouds.•Low stratus risk algorithm developed and verified to indicate forecast uncertainties.</description><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Fog</subject><subject>Low stratus</subject><subject>Numerical weather prediction</subject><subject>Ocean, Atmosphere</subject><subject>Photovoltaic</subject><subject>Physics</subject><subject>Power forecast</subject><subject>Sciences of the Universe</subject><subject>Solar radiation</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxbeskgYO_8skEoFFCkSLGBt2c6EuoS6sl0idtyBG3ISEopYolnMj9570nyEnDKIGbD8fBU7XA8V82GLoYoB-B6ZsLKoIshLvk8mUOUQsbRkh-TI-xUAy8oinRAxdyYYLTvaowxLdNSbsJXB2LWnrXV0TO6l6pAOg3s26OnXxyd9kC7Qqwta25764GTYeuqMf_nxeNtJRze2R3dMDlrZeTz57VPydHP9OF9E9f3t3XxWRzrlRYgKBMU5k4oliUqZTiFnWEHGWS5zznSpVKF51eQtIkKTqaZMZaIgKSTHqiqSKTnb5S5lJzbOvEr3Lqw0YjGrxXgDzssC8uyNDdp0p9XOeu-w_TMwECNQsRI7oGIEKqASA9DBdrmz4fDHm0EnvDa41tgYhzqIxpr_A74BRKaBpg</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Köhler, Carmen</creator><creator>Steiner, Andrea</creator><creator>Saint-Drenan, Yves-Marie</creator><creator>Ernst, Dominique</creator><creator>Bergmann-Dick, Anja</creator><creator>Zirkelbach, Mathias</creator><creator>Ben Bouallègue, Zied</creator><creator>Metzinger, Isabel</creator><creator>Ritter, Bodo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1471-1092</orcidid></search><sort><creationdate>20170201</creationdate><title>Critical weather situations for renewable energies – Part B: Low stratus risk for solar power</title><author>Köhler, Carmen ; Steiner, Andrea ; Saint-Drenan, Yves-Marie ; Ernst, Dominique ; Bergmann-Dick, Anja ; Zirkelbach, Mathias ; Ben Bouallègue, Zied ; Metzinger, Isabel ; Ritter, Bodo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7e0b221ab133b41c4061e905216a621c8bb7c29d6feee0d5bd84a3b037a2e9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Fog</topic><topic>Low stratus</topic><topic>Numerical weather prediction</topic><topic>Ocean, Atmosphere</topic><topic>Photovoltaic</topic><topic>Physics</topic><topic>Power forecast</topic><topic>Sciences of the Universe</topic><topic>Solar radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köhler, Carmen</creatorcontrib><creatorcontrib>Steiner, Andrea</creatorcontrib><creatorcontrib>Saint-Drenan, Yves-Marie</creatorcontrib><creatorcontrib>Ernst, Dominique</creatorcontrib><creatorcontrib>Bergmann-Dick, Anja</creatorcontrib><creatorcontrib>Zirkelbach, Mathias</creatorcontrib><creatorcontrib>Ben Bouallègue, Zied</creatorcontrib><creatorcontrib>Metzinger, Isabel</creatorcontrib><creatorcontrib>Ritter, Bodo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, Carmen</au><au>Steiner, Andrea</au><au>Saint-Drenan, Yves-Marie</au><au>Ernst, Dominique</au><au>Bergmann-Dick, Anja</au><au>Zirkelbach, Mathias</au><au>Ben Bouallègue, Zied</au><au>Metzinger, Isabel</au><au>Ritter, Bodo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical weather situations for renewable energies – Part B: Low stratus risk for solar power</atitle><jtitle>Renewable energy</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>101</volume><spage>794</spage><epage>803</epage><pages>794-803</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahead forecast errors of Germany-wide PV power frequently lie within the magnitude of the balance energy and thus pose a challenge for maintaining grid stability. An indication in advance about the possible occurrence of a critical weather situation such as LS would represent a helpful tool for transmission system operators (TSOs) in their day-to-day business. In the following, a detection algorithm for low stratus risk (LSR) is developed and applied as post-processing to the NWP model forecasts of the regional non-hydrostatic model COSMO-DE, operational at the German Weather Service. The aim of the LSR product is to supply day-ahead warnings and to support the decision making process of the TSOs. The quality of the LSR is assessed by comparing the computed regions of LSR occurrence with a satellite based cloud classification product from the Nowcasting Satellite Facility (NWCSAF). The results show that the LSR provides additional information that should in particular be useful for risk adverse users. •Evaluation of day-ahead solar power forecasts for Germany.•Large solar power errors are linked to low stratus clouds.•Low stratus risk algorithm developed and verified to indicate forecast uncertainties.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2016.09.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1471-1092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2017-02, Vol.101, p.794-803
issn 0960-1481
1879-0682
language eng
recordid cdi_hal_primary_oai_HAL_hal_02287065v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Environmental Engineering
Environmental Sciences
Fog
Low stratus
Numerical weather prediction
Ocean, Atmosphere
Photovoltaic
Physics
Power forecast
Sciences of the Universe
Solar radiation
title Critical weather situations for renewable energies – Part B: Low stratus risk for solar power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20weather%20situations%20for%20renewable%20energies%20%E2%80%93%20Part%20B:%20Low%20stratus%20risk%20for%20solar%20power&rft.jtitle=Renewable%20energy&rft.au=K%C3%B6hler,%20Carmen&rft.date=2017-02-01&rft.volume=101&rft.spage=794&rft.epage=803&rft.pages=794-803&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2016.09.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02287065v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148116307844&rfr_iscdi=true