The active space debris removal mission RemoveDebris. Part 2: In orbit operations

This is the second of two companion papers that describe the development of the RemoveDEBRIS space mission. This second article describes the in-orbit operations that were performed to demonstrate technologies to be used for the active removal of space debris, whereas the first paper described the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2020-03, Vol.168, p.310-322
Hauptverfasser: Aglietti, Guglielmo S., Taylor, Ben, Fellowes, Simon, Salmon, Thierry, Retat, Ingo, Hall, Alexander, Chabot, Thomas, Pisseloup, Aurélien, Cox, C., Zarkesh, A., Mafficini, A., Vinkoff, N., Bashford, K., Bernal, Cesar, Chaumette, François, Pollini, Alexandre, Steyn, Willem H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue
container_start_page 310
container_title Acta astronautica
container_volume 168
creator Aglietti, Guglielmo S.
Taylor, Ben
Fellowes, Simon
Salmon, Thierry
Retat, Ingo
Hall, Alexander
Chabot, Thomas
Pisseloup, Aurélien
Cox, C.
Zarkesh, A.
Mafficini, A.
Vinkoff, N.
Bashford, K.
Bernal, Cesar
Chaumette, François
Pollini, Alexandre
Steyn, Willem H.
description This is the second of two companion papers that describe the development of the RemoveDEBRIS space mission. This second article describes the in-orbit operations that were performed to demonstrate technologies to be used for the active removal of space debris, whereas the first paper described the development of the satellite's hardware. The RemoveDebris mission has been the world's first Active Debris Removal (ADR) mission to successfully demonstrate, in orbit, some cost effective technologies, including net and harpoon capture; and elements of the whole sequence of operations, like the vision-based navigation. The satellite was launched the 2nd of April 2018, to the International Space Station (ISS) and from there, on the 20th of June 2018, was deployed via the NanoRacks Kaber system into an orbit of 405 km altitude. During the mission, two 2U CubeSats have been released by the mothercraft platform as artificial debris targets, to demonstrate net capture and cameras to be used for vision based navigation. Harpoon capture has been demonstrated by deploying a target and then firing at it a harpoon tethered to the platform. The various phases of the missions have been monitored using relevant telemetry and video cameras, and this paper reports the results of the various demonstrations. •Describes a series of in-orbit demonstrations for the active removal of space debris.•Net and Harpoon debris capture systems performance are analysed.•Demonstration of Li-DAR camera for Vision Based Navigation System.•Demonstration of dragsail and discussion of anomalies and lesson learned.
doi_str_mv 10.1016/j.actaastro.2019.09.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02286751v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576519312500</els_id><sourcerecordid>2371771864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-48de1576c04485d16bd9f39284b4eb4afb5b013e5ce2fdc5e106c19ec3583c423</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYBXXrSepOmXd2N-bDDwg3kd0vSUpWzLTGrBf29qZbfCgUNynjycvIRcM4gZsOyujZXulPKdszEHVsYQCtgJmbAiLyMOCZySCUApojTP0nNy4X0LADkvygl5W2-QBoHpkfqD0khrrJzx1OHO9mpLd8Z7Y_f0fTjjw-8wpq_KdZTf0-WeWleZjtoDOtUF0F-Ss0ZtPV799Sn5eHpczxfR6uV5OZ-tIi1K3kWiqJGFhTQIUaQ1y6q6bJKSF6ISWAnVVGkFLMFUI29qnSKDTLMSdZIWiRY8mZLb0btRW3lwZqfct7TKyMVsJYc74LzI8pT1LLA3I3tw9vMLfSdb--X2YT3Jk5zlOSsyEah8pLSz3jtsjloGcshatvKYtRyylhAKBv9sfInhw71BJ702uNdYG4e6k7U1_zp-AF_5iuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371771864</pqid></control><display><type>article</type><title>The active space debris removal mission RemoveDebris. Part 2: In orbit operations</title><source>Elsevier ScienceDirect Journals</source><creator>Aglietti, Guglielmo S. ; Taylor, Ben ; Fellowes, Simon ; Salmon, Thierry ; Retat, Ingo ; Hall, Alexander ; Chabot, Thomas ; Pisseloup, Aurélien ; Cox, C. ; Zarkesh, A. ; Mafficini, A. ; Vinkoff, N. ; Bashford, K. ; Bernal, Cesar ; Chaumette, François ; Pollini, Alexandre ; Steyn, Willem H.</creator><creatorcontrib>Aglietti, Guglielmo S. ; Taylor, Ben ; Fellowes, Simon ; Salmon, Thierry ; Retat, Ingo ; Hall, Alexander ; Chabot, Thomas ; Pisseloup, Aurélien ; Cox, C. ; Zarkesh, A. ; Mafficini, A. ; Vinkoff, N. ; Bashford, K. ; Bernal, Cesar ; Chaumette, François ; Pollini, Alexandre ; Steyn, Willem H.</creatorcontrib><description>This is the second of two companion papers that describe the development of the RemoveDEBRIS space mission. This second article describes the in-orbit operations that were performed to demonstrate technologies to be used for the active removal of space debris, whereas the first paper described the development of the satellite's hardware. The RemoveDebris mission has been the world's first Active Debris Removal (ADR) mission to successfully demonstrate, in orbit, some cost effective technologies, including net and harpoon capture; and elements of the whole sequence of operations, like the vision-based navigation. The satellite was launched the 2nd of April 2018, to the International Space Station (ISS) and from there, on the 20th of June 2018, was deployed via the NanoRacks Kaber system into an orbit of 405 km altitude. During the mission, two 2U CubeSats have been released by the mothercraft platform as artificial debris targets, to demonstrate net capture and cameras to be used for vision based navigation. Harpoon capture has been demonstrated by deploying a target and then firing at it a harpoon tethered to the platform. The various phases of the missions have been monitored using relevant telemetry and video cameras, and this paper reports the results of the various demonstrations. •Describes a series of in-orbit demonstrations for the active removal of space debris.•Net and Harpoon debris capture systems performance are analysed.•Demonstration of Li-DAR camera for Vision Based Navigation System.•Demonstration of dragsail and discussion of anomalies and lesson learned.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.09.001</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>ADR ; Cameras ; Computer Science ; Cubesat ; Debris removal ; Deorbiting ; Detritus ; Dragsail ; Harpoon ; International Space Station ; Navigation ; Net ; Robotics ; Satellites ; Space debris ; Space debris mitigation ; Space missions ; Space stations ; Telemetry ; Vision ; Vision-based navigation</subject><ispartof>Acta astronautica, 2020-03, Vol.168, p.310-322</ispartof><rights>2019 IAA</rights><rights>Copyright Elsevier BV Mar 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-48de1576c04485d16bd9f39284b4eb4afb5b013e5ce2fdc5e106c19ec3583c423</citedby><cites>FETCH-LOGICAL-c492t-48de1576c04485d16bd9f39284b4eb4afb5b013e5ce2fdc5e106c19ec3583c423</cites><orcidid>0000-0002-6012-537X ; 0000-0002-5866-2221 ; 0000-0003-2397-2251 ; 0000-0002-1238-4385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0094576519312500$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02286751$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aglietti, Guglielmo S.</creatorcontrib><creatorcontrib>Taylor, Ben</creatorcontrib><creatorcontrib>Fellowes, Simon</creatorcontrib><creatorcontrib>Salmon, Thierry</creatorcontrib><creatorcontrib>Retat, Ingo</creatorcontrib><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Chabot, Thomas</creatorcontrib><creatorcontrib>Pisseloup, Aurélien</creatorcontrib><creatorcontrib>Cox, C.</creatorcontrib><creatorcontrib>Zarkesh, A.</creatorcontrib><creatorcontrib>Mafficini, A.</creatorcontrib><creatorcontrib>Vinkoff, N.</creatorcontrib><creatorcontrib>Bashford, K.</creatorcontrib><creatorcontrib>Bernal, Cesar</creatorcontrib><creatorcontrib>Chaumette, François</creatorcontrib><creatorcontrib>Pollini, Alexandre</creatorcontrib><creatorcontrib>Steyn, Willem H.</creatorcontrib><title>The active space debris removal mission RemoveDebris. Part 2: In orbit operations</title><title>Acta astronautica</title><description>This is the second of two companion papers that describe the development of the RemoveDEBRIS space mission. This second article describes the in-orbit operations that were performed to demonstrate technologies to be used for the active removal of space debris, whereas the first paper described the development of the satellite's hardware. The RemoveDebris mission has been the world's first Active Debris Removal (ADR) mission to successfully demonstrate, in orbit, some cost effective technologies, including net and harpoon capture; and elements of the whole sequence of operations, like the vision-based navigation. The satellite was launched the 2nd of April 2018, to the International Space Station (ISS) and from there, on the 20th of June 2018, was deployed via the NanoRacks Kaber system into an orbit of 405 km altitude. During the mission, two 2U CubeSats have been released by the mothercraft platform as artificial debris targets, to demonstrate net capture and cameras to be used for vision based navigation. Harpoon capture has been demonstrated by deploying a target and then firing at it a harpoon tethered to the platform. The various phases of the missions have been monitored using relevant telemetry and video cameras, and this paper reports the results of the various demonstrations. •Describes a series of in-orbit demonstrations for the active removal of space debris.•Net and Harpoon debris capture systems performance are analysed.•Demonstration of Li-DAR camera for Vision Based Navigation System.•Demonstration of dragsail and discussion of anomalies and lesson learned.</description><subject>ADR</subject><subject>Cameras</subject><subject>Computer Science</subject><subject>Cubesat</subject><subject>Debris removal</subject><subject>Deorbiting</subject><subject>Detritus</subject><subject>Dragsail</subject><subject>Harpoon</subject><subject>International Space Station</subject><subject>Navigation</subject><subject>Net</subject><subject>Robotics</subject><subject>Satellites</subject><subject>Space debris</subject><subject>Space debris mitigation</subject><subject>Space missions</subject><subject>Space stations</subject><subject>Telemetry</subject><subject>Vision</subject><subject>Vision-based navigation</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe_wYBXXrSepOmXd2N-bDDwg3kd0vSUpWzLTGrBf29qZbfCgUNynjycvIRcM4gZsOyujZXulPKdszEHVsYQCtgJmbAiLyMOCZySCUApojTP0nNy4X0LADkvygl5W2-QBoHpkfqD0khrrJzx1OHO9mpLd8Z7Y_f0fTjjw-8wpq_KdZTf0-WeWleZjtoDOtUF0F-Ss0ZtPV799Sn5eHpczxfR6uV5OZ-tIi1K3kWiqJGFhTQIUaQ1y6q6bJKSF6ISWAnVVGkFLMFUI29qnSKDTLMSdZIWiRY8mZLb0btRW3lwZqfct7TKyMVsJYc74LzI8pT1LLA3I3tw9vMLfSdb--X2YT3Jk5zlOSsyEah8pLSz3jtsjloGcshatvKYtRyylhAKBv9sfInhw71BJ702uNdYG4e6k7U1_zp-AF_5iuk</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Aglietti, Guglielmo S.</creator><creator>Taylor, Ben</creator><creator>Fellowes, Simon</creator><creator>Salmon, Thierry</creator><creator>Retat, Ingo</creator><creator>Hall, Alexander</creator><creator>Chabot, Thomas</creator><creator>Pisseloup, Aurélien</creator><creator>Cox, C.</creator><creator>Zarkesh, A.</creator><creator>Mafficini, A.</creator><creator>Vinkoff, N.</creator><creator>Bashford, K.</creator><creator>Bernal, Cesar</creator><creator>Chaumette, François</creator><creator>Pollini, Alexandre</creator><creator>Steyn, Willem H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6012-537X</orcidid><orcidid>https://orcid.org/0000-0002-5866-2221</orcidid><orcidid>https://orcid.org/0000-0003-2397-2251</orcidid><orcidid>https://orcid.org/0000-0002-1238-4385</orcidid></search><sort><creationdate>202003</creationdate><title>The active space debris removal mission RemoveDebris. Part 2: In orbit operations</title><author>Aglietti, Guglielmo S. ; Taylor, Ben ; Fellowes, Simon ; Salmon, Thierry ; Retat, Ingo ; Hall, Alexander ; Chabot, Thomas ; Pisseloup, Aurélien ; Cox, C. ; Zarkesh, A. ; Mafficini, A. ; Vinkoff, N. ; Bashford, K. ; Bernal, Cesar ; Chaumette, François ; Pollini, Alexandre ; Steyn, Willem H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-48de1576c04485d16bd9f39284b4eb4afb5b013e5ce2fdc5e106c19ec3583c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADR</topic><topic>Cameras</topic><topic>Computer Science</topic><topic>Cubesat</topic><topic>Debris removal</topic><topic>Deorbiting</topic><topic>Detritus</topic><topic>Dragsail</topic><topic>Harpoon</topic><topic>International Space Station</topic><topic>Navigation</topic><topic>Net</topic><topic>Robotics</topic><topic>Satellites</topic><topic>Space debris</topic><topic>Space debris mitigation</topic><topic>Space missions</topic><topic>Space stations</topic><topic>Telemetry</topic><topic>Vision</topic><topic>Vision-based navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aglietti, Guglielmo S.</creatorcontrib><creatorcontrib>Taylor, Ben</creatorcontrib><creatorcontrib>Fellowes, Simon</creatorcontrib><creatorcontrib>Salmon, Thierry</creatorcontrib><creatorcontrib>Retat, Ingo</creatorcontrib><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Chabot, Thomas</creatorcontrib><creatorcontrib>Pisseloup, Aurélien</creatorcontrib><creatorcontrib>Cox, C.</creatorcontrib><creatorcontrib>Zarkesh, A.</creatorcontrib><creatorcontrib>Mafficini, A.</creatorcontrib><creatorcontrib>Vinkoff, N.</creatorcontrib><creatorcontrib>Bashford, K.</creatorcontrib><creatorcontrib>Bernal, Cesar</creatorcontrib><creatorcontrib>Chaumette, François</creatorcontrib><creatorcontrib>Pollini, Alexandre</creatorcontrib><creatorcontrib>Steyn, Willem H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aglietti, Guglielmo S.</au><au>Taylor, Ben</au><au>Fellowes, Simon</au><au>Salmon, Thierry</au><au>Retat, Ingo</au><au>Hall, Alexander</au><au>Chabot, Thomas</au><au>Pisseloup, Aurélien</au><au>Cox, C.</au><au>Zarkesh, A.</au><au>Mafficini, A.</au><au>Vinkoff, N.</au><au>Bashford, K.</au><au>Bernal, Cesar</au><au>Chaumette, François</au><au>Pollini, Alexandre</au><au>Steyn, Willem H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The active space debris removal mission RemoveDebris. Part 2: In orbit operations</atitle><jtitle>Acta astronautica</jtitle><date>2020-03</date><risdate>2020</risdate><volume>168</volume><spage>310</spage><epage>322</epage><pages>310-322</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>This is the second of two companion papers that describe the development of the RemoveDEBRIS space mission. This second article describes the in-orbit operations that were performed to demonstrate technologies to be used for the active removal of space debris, whereas the first paper described the development of the satellite's hardware. The RemoveDebris mission has been the world's first Active Debris Removal (ADR) mission to successfully demonstrate, in orbit, some cost effective technologies, including net and harpoon capture; and elements of the whole sequence of operations, like the vision-based navigation. The satellite was launched the 2nd of April 2018, to the International Space Station (ISS) and from there, on the 20th of June 2018, was deployed via the NanoRacks Kaber system into an orbit of 405 km altitude. During the mission, two 2U CubeSats have been released by the mothercraft platform as artificial debris targets, to demonstrate net capture and cameras to be used for vision based navigation. Harpoon capture has been demonstrated by deploying a target and then firing at it a harpoon tethered to the platform. The various phases of the missions have been monitored using relevant telemetry and video cameras, and this paper reports the results of the various demonstrations. •Describes a series of in-orbit demonstrations for the active removal of space debris.•Net and Harpoon debris capture systems performance are analysed.•Demonstration of Li-DAR camera for Vision Based Navigation System.•Demonstration of dragsail and discussion of anomalies and lesson learned.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.09.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6012-537X</orcidid><orcidid>https://orcid.org/0000-0002-5866-2221</orcidid><orcidid>https://orcid.org/0000-0003-2397-2251</orcidid><orcidid>https://orcid.org/0000-0002-1238-4385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2020-03, Vol.168, p.310-322
issn 0094-5765
1879-2030
language eng
recordid cdi_hal_primary_oai_HAL_hal_02286751v1
source Elsevier ScienceDirect Journals
subjects ADR
Cameras
Computer Science
Cubesat
Debris removal
Deorbiting
Detritus
Dragsail
Harpoon
International Space Station
Navigation
Net
Robotics
Satellites
Space debris
Space debris mitigation
Space missions
Space stations
Telemetry
Vision
Vision-based navigation
title The active space debris removal mission RemoveDebris. Part 2: In orbit operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20active%20space%20debris%20removal%20mission%20RemoveDebris.%20Part%202:%20In%20orbit%20operations&rft.jtitle=Acta%20astronautica&rft.au=Aglietti,%20Guglielmo%20S.&rft.date=2020-03&rft.volume=168&rft.spage=310&rft.epage=322&rft.pages=310-322&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.09.001&rft_dat=%3Cproquest_hal_p%3E2371771864%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371771864&rft_id=info:pmid/&rft_els_id=S0094576519312500&rfr_iscdi=true