Validity of Lagrange (Bézier) and rational Bézier quads of degree 2

SUMMARYFinite elements of degree two or more are needed to solve various PDE problems. This paper discusses a method to validate such meshes for the case of quadrilateral elements of degree 2. The first section of this paper comes back to Bézier curve and Bézier quadrilateral patches of degree 2. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2014-08, Vol.99 (8), p.611-632
Hauptverfasser: George, P.L., Borouchaki, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 8
container_start_page 611
container_title International journal for numerical methods in engineering
container_volume 99
creator George, P.L.
Borouchaki, H.
description SUMMARYFinite elements of degree two or more are needed to solve various PDE problems. This paper discusses a method to validate such meshes for the case of quadrilateral elements of degree 2. The first section of this paper comes back to Bézier curve and Bézier quadrilateral patches of degree 2. The way in which a Bézier quad patch and a Q2 finite element quad are related is introduced. The two possible quads are discussed, the 9‐node (or complete) quad together with the 8‐node (or Serendipity) quad. A validity condition, the positivity of the Jacobian, is exhibited for these two elements. The discussion continues with a rational Bézier quad patch that can be used as a finite element. Extension to arbitrary degrees is given. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4696
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02286200v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3374896771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3986-8cf8a1454683fdc2ad3d4e6b1851885deccb0fb2788af58174e2893a9ae315913</originalsourceid><addsrcrecordid>eNp10NtK5EAQBuBGVnBWBR8h4I1eRPuQPl26MqtiPFx4AG-amqQytmYS7Z5ZHd_I5_DFTBhRXPCqoOrrovonZIPRHUYp320muJMpq5bIgFGrU8qp_kUG3cim0hq2Qn7HeEcpY5KKARleQe1LP50nbZXkMA7QjDHZ-vP2-uIxbCfQlEmAqW8bqJOPbvI4gzL2D0ocB8SEr5HlCuqI6x91lVz-HV7sH6b52cHR_l6eFsIalZqiMsAymSkjqrLgUIoyQzViRjJjZIlFMaLViGtjoJKG6Qy5sQIsoGDSMrFKthd7b6F2D8FPIMxdC94d7uWu71HOjeKU_uvt1sI-hPZxhnHqJj4WWNfQYDuLjinNMmO0MB3d_I_etbPQ_bhTsjuXUW3518IitDEGrD4vYNT12bsue9dn39F0QZ98jfMfnTs9GX73Pk7x-dNDuHdKCy3d9emB0zfqPD_h1B2Ld2Obkb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545410792</pqid></control><display><type>article</type><title>Validity of Lagrange (Bézier) and rational Bézier quads of degree 2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>George, P.L. ; Borouchaki, H.</creator><creatorcontrib>George, P.L. ; Borouchaki, H.</creatorcontrib><description>SUMMARYFinite elements of degree two or more are needed to solve various PDE problems. This paper discusses a method to validate such meshes for the case of quadrilateral elements of degree 2. The first section of this paper comes back to Bézier curve and Bézier quadrilateral patches of degree 2. The way in which a Bézier quad patch and a Q2 finite element quad are related is introduced. The two possible quads are discussed, the 9‐node (or complete) quad together with the 8‐node (or Serendipity) quad. A validity condition, the positivity of the Jacobian, is exhibited for these two elements. The discussion continues with a rational Bézier quad patch that can be used as a finite element. Extension to arbitrary degrees is given. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4696</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>9-node and 8-node quads ; Bezier ; Bézier curve ; Bézier quad ; Computer Science ; Curves (geometry) ; Finite element method ; high-order element ; Jacobian ; Jacobians ; Mathematical analysis ; Mathematical models ; Numerical Analysis ; Q2 finite element ; Q2 finite element quads ; Q2 mesh ; Quadrilaterals ; rational Bézier curve ; rational Bézier quad</subject><ispartof>International journal for numerical methods in engineering, 2014-08, Vol.99 (8), p.611-632</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3986-8cf8a1454683fdc2ad3d4e6b1851885deccb0fb2788af58174e2893a9ae315913</citedby><cites>FETCH-LOGICAL-c3986-8cf8a1454683fdc2ad3d4e6b1851885deccb0fb2788af58174e2893a9ae315913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4696$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4696$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-02286200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>George, P.L.</creatorcontrib><creatorcontrib>Borouchaki, H.</creatorcontrib><title>Validity of Lagrange (Bézier) and rational Bézier quads of degree 2</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYFinite elements of degree two or more are needed to solve various PDE problems. This paper discusses a method to validate such meshes for the case of quadrilateral elements of degree 2. The first section of this paper comes back to Bézier curve and Bézier quadrilateral patches of degree 2. The way in which a Bézier quad patch and a Q2 finite element quad are related is introduced. The two possible quads are discussed, the 9‐node (or complete) quad together with the 8‐node (or Serendipity) quad. A validity condition, the positivity of the Jacobian, is exhibited for these two elements. The discussion continues with a rational Bézier quad patch that can be used as a finite element. Extension to arbitrary degrees is given. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>9-node and 8-node quads</subject><subject>Bezier</subject><subject>Bézier curve</subject><subject>Bézier quad</subject><subject>Computer Science</subject><subject>Curves (geometry)</subject><subject>Finite element method</subject><subject>high-order element</subject><subject>Jacobian</subject><subject>Jacobians</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical Analysis</subject><subject>Q2 finite element</subject><subject>Q2 finite element quads</subject><subject>Q2 mesh</subject><subject>Quadrilaterals</subject><subject>rational Bézier curve</subject><subject>rational Bézier quad</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10NtK5EAQBuBGVnBWBR8h4I1eRPuQPl26MqtiPFx4AG-amqQytmYS7Z5ZHd_I5_DFTBhRXPCqoOrrovonZIPRHUYp320muJMpq5bIgFGrU8qp_kUG3cim0hq2Qn7HeEcpY5KKARleQe1LP50nbZXkMA7QjDHZ-vP2-uIxbCfQlEmAqW8bqJOPbvI4gzL2D0ocB8SEr5HlCuqI6x91lVz-HV7sH6b52cHR_l6eFsIalZqiMsAymSkjqrLgUIoyQzViRjJjZIlFMaLViGtjoJKG6Qy5sQIsoGDSMrFKthd7b6F2D8FPIMxdC94d7uWu71HOjeKU_uvt1sI-hPZxhnHqJj4WWNfQYDuLjinNMmO0MB3d_I_etbPQ_bhTsjuXUW3518IitDEGrD4vYNT12bsue9dn39F0QZ98jfMfnTs9GX73Pk7x-dNDuHdKCy3d9emB0zfqPD_h1B2Ld2Obkb4</recordid><startdate>20140824</startdate><enddate>20140824</enddate><creator>George, P.L.</creator><creator>Borouchaki, H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20140824</creationdate><title>Validity of Lagrange (Bézier) and rational Bézier quads of degree 2</title><author>George, P.L. ; Borouchaki, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3986-8cf8a1454683fdc2ad3d4e6b1851885deccb0fb2788af58174e2893a9ae315913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>9-node and 8-node quads</topic><topic>Bezier</topic><topic>Bézier curve</topic><topic>Bézier quad</topic><topic>Computer Science</topic><topic>Curves (geometry)</topic><topic>Finite element method</topic><topic>high-order element</topic><topic>Jacobian</topic><topic>Jacobians</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical Analysis</topic><topic>Q2 finite element</topic><topic>Q2 finite element quads</topic><topic>Q2 mesh</topic><topic>Quadrilaterals</topic><topic>rational Bézier curve</topic><topic>rational Bézier quad</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, P.L.</creatorcontrib><creatorcontrib>Borouchaki, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, P.L.</au><au>Borouchaki, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity of Lagrange (Bézier) and rational Bézier quads of degree 2</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2014-08-24</date><risdate>2014</risdate><volume>99</volume><issue>8</issue><spage>611</spage><epage>632</epage><pages>611-632</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYFinite elements of degree two or more are needed to solve various PDE problems. This paper discusses a method to validate such meshes for the case of quadrilateral elements of degree 2. The first section of this paper comes back to Bézier curve and Bézier quadrilateral patches of degree 2. The way in which a Bézier quad patch and a Q2 finite element quad are related is introduced. The two possible quads are discussed, the 9‐node (or complete) quad together with the 8‐node (or Serendipity) quad. A validity condition, the positivity of the Jacobian, is exhibited for these two elements. The discussion continues with a rational Bézier quad patch that can be used as a finite element. Extension to arbitrary degrees is given. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4696</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2014-08, Vol.99 (8), p.611-632
issn 0029-5981
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_02286200v1
source Wiley Online Library Journals Frontfile Complete
subjects 9-node and 8-node quads
Bezier
Bézier curve
Bézier quad
Computer Science
Curves (geometry)
Finite element method
high-order element
Jacobian
Jacobians
Mathematical analysis
Mathematical models
Numerical Analysis
Q2 finite element
Q2 finite element quads
Q2 mesh
Quadrilaterals
rational Bézier curve
rational Bézier quad
title Validity of Lagrange (Bézier) and rational Bézier quads of degree 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20of%20Lagrange%20(B%C3%A9zier)%20and%20rational%20B%C3%A9zier%20quads%20of%20degree%202&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=George,%20P.L.&rft.date=2014-08-24&rft.volume=99&rft.issue=8&rft.spage=611&rft.epage=632&rft.pages=611-632&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4696&rft_dat=%3Cproquest_hal_p%3E3374896771%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545410792&rft_id=info:pmid/&rfr_iscdi=true