On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient
We investigate the well-posedness problem related to two models of nonlinear McKean Stochastic Differential Equations with some local interaction in the diffusion term. First, we revisit the case of the McKean-Vlasov dynamics with moderate interaction, previously studied by Méléard and Jourdain in [...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | |
container_volume | 289 |
creator | Bossy, Mireille Jabir, Jean-François |
description | We investigate the well-posedness problem related to two models of nonlinear McKean Stochastic Differential Equations with some local interaction in the diffusion term. First, we revisit the case of the McKean-Vlasov dynamics with moderate interaction, previously studied by Méléard and Jourdain in [16], under slightly weaker assumptions, by showing the existence and uniqueness of a weak solution using a Sobolev regularity framework instead of a Hölder one. Second, we study the construction of a Lagrangian Stochastic model endowed with a conditional McKean diffusion term in the velocity dynamics and a nondegenerate diffusion term in the position dynamics. |
doi_str_mv | 10.1007/978-3-030-22285-7_2 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02283803v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5889170_16_51</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1892-6fca0f0557eac31fa326eee11bb258676fc9651827fb95f032c7101a8c92eeef3</originalsourceid><addsrcrecordid>eNo9kE9PGzEUxN3SViQ0n4CLrz0svGfjtfcYpeWPGsQhIA4cLGfzzG5Z1qm9oeLb4ySFk62Z3zxphrFjhBME0KeVNoUsQEIhhDCq0FZ8YpOsyqztJP2ZjQRWZwUC6gM2fjfO1JcPA6pvbIyIupRal3DIJin9AcgcaIEwYg83PR8a4vfUdeuQaNVTSjx4vgjPxK_r3-R6fh1W1CX-rx2a3T-6gVY8RL5o-8dN5yL_2Xq_SW3o-SyQ923dUj98Z1-96xJN_r9H7O781-3sspjfXFzNpvOiQVOJovS1Aw9KaXK1RO-kKIkIcbkUypQ6-1Wp0Ajtl5XyIEWtc2Vn6kpkzssj9mN_t3GdXcf22cVXG1xrL6dzu9VyXSMNyBfMLO7ZlMH-kaJdhvCULILdzm7zwFbavKTdbWzz7Dkj9pl1DH83lAZL21CdK0bX1Y1bDxSTVcZUqPOd0iqUbwDQfxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5889170_16_51</pqid></control><display><type>book_chapter</type><title>On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient</title><source>Springer Books</source><creator>Bossy, Mireille ; Jabir, Jean-François</creator><contributor>dos Reis, Gonҫalo ; Gyöngy, István ; Szpruch, Łukasz ; Siska, David ; Cohen, Samuel N ; Siska, David ; Szpruch, Łukasz ; Gyöngy, István ; dos Reis, Gonҫalo ; Cohen, Samuel N.</contributor><creatorcontrib>Bossy, Mireille ; Jabir, Jean-François ; dos Reis, Gonҫalo ; Gyöngy, István ; Szpruch, Łukasz ; Siska, David ; Cohen, Samuel N ; Siska, David ; Szpruch, Łukasz ; Gyöngy, István ; dos Reis, Gonҫalo ; Cohen, Samuel N.</creatorcontrib><description>We investigate the well-posedness problem related to two models of nonlinear McKean Stochastic Differential Equations with some local interaction in the diffusion term. First, we revisit the case of the McKean-Vlasov dynamics with moderate interaction, previously studied by Méléard and Jourdain in [16], under slightly weaker assumptions, by showing the existence and uniqueness of a weak solution using a Sobolev regularity framework instead of a Hölder one. Second, we study the construction of a Lagrangian Stochastic model endowed with a conditional McKean diffusion term in the velocity dynamics and a nondegenerate diffusion term in the position dynamics.</description><identifier>ISSN: 2194-1009</identifier><identifier>ISBN: 3030222845</identifier><identifier>ISBN: 9783030222840</identifier><identifier>ISBN: 9783030222857</identifier><identifier>ISBN: 3030222853</identifier><identifier>EISSN: 2194-1017</identifier><identifier>EISBN: 9783030222857</identifier><identifier>EISBN: 3030222853</identifier><identifier>DOI: 10.1007/978-3-030-22285-7_2</identifier><identifier>OCLC: 1117637760</identifier><identifier>LCCallNum: QA273.A1-274.9</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Mathematics ; McKean-Vlasov models ; Numerical Analysis ; Singular McKean diffusions ; Weak-strong wellposedness problems</subject><ispartof>Frontiers in Stochastic Analysis-BSDEs, SPDEs and Their Applications, 2019, Vol.289, p.43-87</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6972-9022</orcidid><relation>Springer Proceedings in Mathematics & Statistics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5889170-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-030-22285-7_2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-22285-7_2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,776,777,781,790,882,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02283803$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>dos Reis, Gonҫalo</contributor><contributor>Gyöngy, István</contributor><contributor>Szpruch, Łukasz</contributor><contributor>Siska, David</contributor><contributor>Cohen, Samuel N</contributor><contributor>Siska, David</contributor><contributor>Szpruch, Łukasz</contributor><contributor>Gyöngy, István</contributor><contributor>dos Reis, Gonҫalo</contributor><contributor>Cohen, Samuel N.</contributor><creatorcontrib>Bossy, Mireille</creatorcontrib><creatorcontrib>Jabir, Jean-François</creatorcontrib><title>On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient</title><title>Frontiers in Stochastic Analysis-BSDEs, SPDEs and Their Applications</title><description>We investigate the well-posedness problem related to two models of nonlinear McKean Stochastic Differential Equations with some local interaction in the diffusion term. First, we revisit the case of the McKean-Vlasov dynamics with moderate interaction, previously studied by Méléard and Jourdain in [16], under slightly weaker assumptions, by showing the existence and uniqueness of a weak solution using a Sobolev regularity framework instead of a Hölder one. Second, we study the construction of a Lagrangian Stochastic model endowed with a conditional McKean diffusion term in the velocity dynamics and a nondegenerate diffusion term in the position dynamics.</description><subject>Mathematics</subject><subject>McKean-Vlasov models</subject><subject>Numerical Analysis</subject><subject>Singular McKean diffusions</subject><subject>Weak-strong wellposedness problems</subject><issn>2194-1009</issn><issn>2194-1017</issn><isbn>3030222845</isbn><isbn>9783030222840</isbn><isbn>9783030222857</isbn><isbn>3030222853</isbn><isbn>9783030222857</isbn><isbn>3030222853</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2019</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE9PGzEUxN3SViQ0n4CLrz0svGfjtfcYpeWPGsQhIA4cLGfzzG5Z1qm9oeLb4ySFk62Z3zxphrFjhBME0KeVNoUsQEIhhDCq0FZ8YpOsyqztJP2ZjQRWZwUC6gM2fjfO1JcPA6pvbIyIupRal3DIJin9AcgcaIEwYg83PR8a4vfUdeuQaNVTSjx4vgjPxK_r3-R6fh1W1CX-rx2a3T-6gVY8RL5o-8dN5yL_2Xq_SW3o-SyQ923dUj98Z1-96xJN_r9H7O781-3sspjfXFzNpvOiQVOJovS1Aw9KaXK1RO-kKIkIcbkUypQ6-1Wp0Ajtl5XyIEWtc2Vn6kpkzssj9mN_t3GdXcf22cVXG1xrL6dzu9VyXSMNyBfMLO7ZlMH-kaJdhvCULILdzm7zwFbavKTdbWzz7Dkj9pl1DH83lAZL21CdK0bX1Y1bDxSTVcZUqPOd0iqUbwDQfxQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bossy, Mireille</creator><creator>Jabir, Jean-François</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid></search><sort><creationdate>2019</creationdate><title>On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient</title><author>Bossy, Mireille ; Jabir, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1892-6fca0f0557eac31fa326eee11bb258676fc9651827fb95f032c7101a8c92eeef3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>McKean-Vlasov models</topic><topic>Numerical Analysis</topic><topic>Singular McKean diffusions</topic><topic>Weak-strong wellposedness problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bossy, Mireille</creatorcontrib><creatorcontrib>Jabir, Jean-François</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bossy, Mireille</au><au>Jabir, Jean-François</au><au>dos Reis, Gonҫalo</au><au>Gyöngy, István</au><au>Szpruch, Łukasz</au><au>Siska, David</au><au>Cohen, Samuel N</au><au>Siska, David</au><au>Szpruch, Łukasz</au><au>Gyöngy, István</au><au>dos Reis, Gonҫalo</au><au>Cohen, Samuel N.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient</atitle><btitle>Frontiers in Stochastic Analysis-BSDEs, SPDEs and Their Applications</btitle><seriestitle>Springer Proceedings in Mathematics & Statistics</seriestitle><date>2019</date><risdate>2019</risdate><volume>289</volume><spage>43</spage><epage>87</epage><pages>43-87</pages><issn>2194-1009</issn><eissn>2194-1017</eissn><isbn>3030222845</isbn><isbn>9783030222840</isbn><isbn>9783030222857</isbn><isbn>3030222853</isbn><eisbn>9783030222857</eisbn><eisbn>3030222853</eisbn><abstract>We investigate the well-posedness problem related to two models of nonlinear McKean Stochastic Differential Equations with some local interaction in the diffusion term. First, we revisit the case of the McKean-Vlasov dynamics with moderate interaction, previously studied by Méléard and Jourdain in [16], under slightly weaker assumptions, by showing the existence and uniqueness of a weak solution using a Sobolev regularity framework instead of a Hölder one. Second, we study the construction of a Lagrangian Stochastic model endowed with a conditional McKean diffusion term in the velocity dynamics and a nondegenerate diffusion term in the position dynamics.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-22285-7_2</doi><oclcid>1117637760</oclcid><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-6972-9022</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-1009 |
ispartof | Frontiers in Stochastic Analysis-BSDEs, SPDEs and Their Applications, 2019, Vol.289, p.43-87 |
issn | 2194-1009 2194-1017 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02283803v1 |
source | Springer Books |
subjects | Mathematics McKean-Vlasov models Numerical Analysis Singular McKean diffusions Weak-strong wellposedness problems |
title | On the Wellposedness of Some McKean Models with Moderated or Singular Diffusion Coefficient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20the%20Wellposedness%20of%20Some%20McKean%20Models%20with%20Moderated%20or%20Singular%20Diffusion%20Coefficient&rft.btitle=Frontiers%20in%20Stochastic%20Analysis-BSDEs,%20SPDEs%20and%20Their%20Applications&rft.au=Bossy,%20Mireille&rft.date=2019&rft.volume=289&rft.spage=43&rft.epage=87&rft.pages=43-87&rft.issn=2194-1009&rft.eissn=2194-1017&rft.isbn=3030222845&rft.isbn_list=9783030222840&rft.isbn_list=9783030222857&rft.isbn_list=3030222853&rft_id=info:doi/10.1007/978-3-030-22285-7_2&rft_dat=%3Cproquest_hal_p%3EEBC5889170_16_51%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030222857&rft.eisbn_list=3030222853&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5889170_16_51&rft_id=info:pmid/&rfr_iscdi=true |